1
|
Flesińska J, Szklarska M, Matuła I, Barylski A, Golba S, Zając J, Gawlikowski M, Kurtyka P, Ilnicka B, Dercz G. Electrophoretic Deposition of Chitosan Coatings on the Porous Titanium Substrate. J Funct Biomater 2024; 15:190. [PMID: 39057310 PMCID: PMC11277708 DOI: 10.3390/jfb15070190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Medicine is looking for solutions to help implant patients recover more smoothly. The porous implants promote osteointegration, thereby providing better stabilization. Introducing porosity into metallic implants enhances their biocompatibility and facilitates osteointegration. The introduction of porosity is also associated with a reduction in Young's modulus, which reduces the risk of tissue outgrowth around the implant. However, the risk of chronic inflammation remains a concern, necessitating the development of coatings to mitigate adverse reactions. An interesting biomaterial for such modifications is chitosan, which has antimicrobial, antifungal, and osteointegration properties. In the present work, a porous titanium biomaterial was obtained by powder metallurgy, and electrophoretic deposition of chitosan coatings was used to modify its surface. This study investigated the influence of ethanol content in the deposition solution on the quality of chitosan coatings. The EPD process facilitates the control of coating thickness and morphology, with higher voltages resulting in thicker coatings and increased pore formation. Ethanol concentration in the solution affects coating quality, with higher concentrations leading to cracking and peeling. Optimal coating conditions (30 min/10 V) yield high-quality coatings, demonstrating excellent cell viability and negligible cytotoxicity. The GIXD and ATR-FTIR analysis confirmed the presence of deposited chitosan coatings on Ti substrates. The microstructure of the chitosan coatings was examined by scanning electron microscopy. Biological tests showed no cytotoxicity of the obtained materials, which allows for further research and the possibility of their use in medicine. In conclusion, EPD offers a viable method for producing chitosan-based coatings with controlled properties for biomedical applications, ensuring enhanced patient outcomes and implant performance.
Collapse
Affiliation(s)
- Julia Flesińska
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Magdalena Szklarska
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Izabela Matuła
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Sylwia Golba
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Julia Zając
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Maciej Gawlikowski
- Foundation of Cardiac Surgery Development, Institute of Heart Prostheses, 35a Wolności St., 41-800 Zabrze, Poland; (M.G.); (P.K.)
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelt’s Str. 40, 41-800 Zabrze, Poland
| | - Przemysław Kurtyka
- Foundation of Cardiac Surgery Development, Institute of Heart Prostheses, 35a Wolności St., 41-800 Zabrze, Poland; (M.G.); (P.K.)
| | - Barbara Ilnicka
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16 St., 44-100 Gliwice, Poland;
| | - Grzegorz Dercz
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| |
Collapse
|
2
|
Prodana M, Stoian AB, Ionita D, Brajnicov S, Boerasu I, Enachescu M, Burnei C. In-Depth Characterization of Two Bioactive Coatings Obtained Using MAPLE on TiTaZrAg. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2989. [PMID: 38930358 PMCID: PMC11205300 DOI: 10.3390/ma17122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
TiZrTaAg alloy is a remarkable material with exceptional properties, making it a unique choice among various industrial applications. In the present study, two types of bioactive coatings using MAPLE were obtained on a TiZrTaAg substrate. The base coating consisted in a mixture of chitosan and bioglass in which zinc oxide and graphene oxide were added. The samples were characterized in-depth through a varied choice of methods to provide a more complete picture of the two types of bioactive coating. The analysis included Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ellipsometry, and micro-Raman. The Vickers hardness test was used to determine the hardness of the films and the penetration depth. Film adhesion forces were determined using atomic force microscopy (AFM). The corrosion rate was highlighted by polarization curves and by using electrochemical impedance spectroscopy (EIS). The performed tests revealed that the composite coatings improve the properties of the TiZrTaAg alloy, making them feasible for future use as scaffold materials or in implantology.
Collapse
Affiliation(s)
- Mariana Prodana
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (M.P.); (A.B.S.)
| | - Andrei Bogdan Stoian
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (M.P.); (A.B.S.)
| | - Daniela Ionita
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (M.P.); (A.B.S.)
| | - Simona Brajnicov
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Iulian Boerasu
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.B.); (M.E.)
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (I.B.); (M.E.)
| | - Cristian Burnei
- Clinical Department of Orthopedics and Traumatology II, Clinical Emergency Hospital, Calea Floreasca 8, 014461 Bucharest, Romania;
| |
Collapse
|
3
|
Haitao X, Siyuan L, Sutong G, Yu G, Peirong X, Ling W, Yujian D, Dehong F. Preparation of Cu 2+/TA/HAP composite coating with anti-bacterial and osteogenic potential on 3D-printed porous Ti alloy scaffolds for orthopedic applications. Open Life Sci 2024; 19:20220826. [PMID: 38465344 PMCID: PMC10921476 DOI: 10.1515/biol-2022-0826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 03/12/2024] Open
Abstract
Because of stress shielding effects, traditional titanium (Ti) alloy scaffolds have a high elastic modulus, which might promote looseness and bone disintegration surrounding the implant, increasing the likelihood of a second surgery. In contrast, 3D-printed porous Ti alloy scaffolds can reduce the scaffold weight while enhancing biocompatibility. Further, these scaffolds' porous nature allows bone tissue ingrowth as well as strong pore connectivity, which can improve nutrient absorption. Nevertheless, bare Ti alloy implants may fail because of inadequate bone integration; hence, adding a coating on the implant surface is an effective technique for improving implant stability. In this study, a composite coating comprising hydroxyapatite (HAP), chitosan (CS), tannic acid (TA) and copper ions (Cu2+) (Cu2+/TA/HAP composite coating) was prepared on the surface of 3D printed porous Ti alloy scaffolds using electrophoretic deposition. Using the standard plate count method, Live/Dead bacteria staining assay, FITC Phalloidin and 4',6-diamidino-2-phenylindole staining assay, and live/dead staining of cells we determined that the composite coating has better antibacterial properties and cytocompatibility as well as lower cytotoxicity. The Alkaline Phosphatase assay revealed that the coating results showed good osteogenesis potential. Overall, the composite coatings produced in this investigation give new potential for the application of Ti alloys in clinics.
Collapse
Affiliation(s)
- Xu Haitao
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| | - Li Siyuan
- School of Chemical and Material Engineering, Jiangnan University, Wuxi214000, Jiangsu, China
| | - Guo Sutong
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| | - Guo Yu
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| | - Xu Peirong
- Wuxi No. 5 People’s Hospital, Wuxi214000, Jiangsu, China
| | - Wang Ling
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| | - Ding Yujian
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| | - Feng Dehong
- Wuxi People’s Hospital of Nanjing Medical University, Wuxi214000, Jiangsu, China
| |
Collapse
|
4
|
Fernández-Solis C, Keil P, Erbe A. Molybdate and Phosphate Cross-Linked Chitosan Films for Corrosion Protection of Hot-Dip Galvanized Steel. ACS OMEGA 2023; 8:19613-19624. [PMID: 37305241 PMCID: PMC10249392 DOI: 10.1021/acsomega.3c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
Environmentally friendly and sustainable methods to protect hot-dip galvanized (HDG) steel from corrosion are extensively studied. Films of the biopolymer polyelectrolyte chitosan were ionically cross-linked in this work with the well-known corrosion inhibitors phosphate and molybdate. Layers on this basis are presented as components in a protective system and could, e.g., be applied in pretreatments similar to a conversion coating. For the preparation of the chitosan-based films, a procedure involving sol-gel chemistry and wet-wet application was utilized. Homogeneous films of few micrometers thickness were obtained on HDG steel substrates after thermal curing. Properties of chitosan-molybdate and chitosan-phosphate films were compared with purely passive epoxysilane-cross-linked chitosan, and pure chitosan. Delamination behavior of a poly(vinyl butyral) (PVB) weak model top coating studied by scanning Kelvin probe (SKP) showed an almost linear time dependence over >10 h on all systems. Delamination rates were 0.28 mm h-1 (chitosan-molybdate) and 0.19 mm h-1 (chitosan-phosphate), ca. 5% of a non-cross-linked chitosan reference and slightly higher than of the epoxsyilane cross-linked chitosan. Immersion of the treated zinc samples over 40 h in 5% NaCl solution yielded a 5-fold increase of the resistance in the chitosan-molybdate system, as evidenced by electrochemical impedance spectroscopy (EIS). Ion exchange of electrolyte anions with molybdate and phosphate triggers corrosion inhibition, presumably by reaction with the HDG surface as well described in the literature for these inhibitors. Thus, such surface treatments have potential for application, e.g., in temporary corrosion protection.
Collapse
Affiliation(s)
- Christian Fernández-Solis
- Department
of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| | - Patrick Keil
- BASF
Coatings GmbH, Glasuritstraße
1, 48165 Münster, Germany
| | - Andreas Erbe
- Department
of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
- Department
of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
5
|
Said HA, Mabroum H, Lahcini M, Oudadesse H, Barroug A, Youcef HB, Noukrati H. Manufacturing methods, properties, and potential applications in bone tissue regeneration of hydroxyapatite-chitosan biocomposites: A review. Int J Biol Macromol 2023:125150. [PMID: 37285882 DOI: 10.1016/j.ijbiomac.2023.125150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Hydroxyapatite (HA) and chitosan (CS) biopolymer are the major materials investigated for biomedical purposes. Both of these components play an important role in the orthopedic field as bone substitutes or drug release systems. Used separately, the hydroxyapatite is quite fragile, while CS mechanical strength is very weak. Therefore, a combination of HA and CS polymer is used, which provides excellent mechanical performance with high biocompatibility and biomimetic capacity. Moreover, the porous structure and reactivity of the hydroxyapatite-chitosan (HA-CS) composite allow their application not only as a bone repair but also as a drug delivery system providing controlled drug release directly to the bone site. These features make biomimetic HA-CS composite a subject of interest for many researchers. Through this review, we provide the important recent achievements in the development of HA-CS composites, focusing on manufacturing techniques, conventional and novel three-dimensional bioprinting technology, and physicochemical and biological properties. The drug delivery properties and the most relevant biomedical applications of the HA-CS composite scaffolds are also presented. Finally, alternative approaches are proposed to develop HA composites with the aim to improve their physicochemical, mechanical, and biological properties.
Collapse
Affiliation(s)
- H Ait Said
- Mohammed VI Polytechnic University (UM6P), High Throughput Multidisciplinary Research laboratory (HTMR-Lab), 43150 Benguerir, Morocco; Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco
| | - H Mabroum
- Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco
| | - M Lahcini
- Cadi Ayyad University, Faculty of Sciences and Technologies, IMED Lab, 40000 Marrakech, Morocco
| | - H Oudadesse
- University of Rennes1, ISCR-UMR, 6226 Rennes, France
| | - A Barroug
- Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco; Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco
| | - H Ben Youcef
- Mohammed VI Polytechnic University (UM6P), High Throughput Multidisciplinary Research laboratory (HTMR-Lab), 43150 Benguerir, Morocco.
| | - H Noukrati
- Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco.
| |
Collapse
|
6
|
Vanheuverzwijn J, Maillard EE, Mahat A, Fowler L, Monteyne D, Bonnaud L, Landercy N, Hemberg A, Janković A, Meyer F, Mišković-Stanković V, Stevanović M, Mirica C, Pérez-Morga D, Luginbuehl R, Combes C, Furtos G, Fontaine V. Easy, Flexible and Standardizable Anti-Nascent Biofilm Activity Assay to Assess Implant Materials. Microorganisms 2023; 11:microorganisms11041023. [PMID: 37110446 PMCID: PMC10146976 DOI: 10.3390/microorganisms11041023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Medical implants have improved the quality of life of many patients. However, surgical intervention may eventually lead to implant microbial contamination. The aims of this research were to develop an easy, robust, quantitative assay to assess surface antimicrobial activities, especially the anti-nascent biofilm activity, and to identify control surfaces, allowing for international comparisons. Using new antimicrobial assays to assess the inhibition of nascent biofilm during persistent contact or after transient contact with bacteria, we show that the 5 cent Euro coin or other metal-based antibacterial coins can be used as positive controls, as more than 4 log reduction on bacterial survival was observed when using either S. aureus or P. aeruginosa as targets. The methods and controls described here could be useful to develop an easy, flexible and standardizable assay to assess relevant antimicrobial activities of new implant materials developed by industries and academics.
Collapse
Affiliation(s)
- Jérome Vanheuverzwijn
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Eloise-Eliane Maillard
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Amal Mahat
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Lee Fowler
- Applied Materials Science, The Ångström Laboratory, Department of Engineering Sciences, Uppsala University, P.O. Box 534, 75121 Uppsala, Sweden
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, Faculté des Sciences & CMMI, Université Libre de Bruxelles (ULB), CP 300. Rue Prof. Jeener & Brachet, 12, 6041 Gosselies, Belgium
| | - Leïla Bonnaud
- Center of Innovation and Research in Materials and Polymers, Materia Nova Research Center & University of Mons, 7000 Mons, Belgium
| | - Nicolas Landercy
- Center of Innovation and Research in Materials and Polymers, Materia Nova Research Center & University of Mons, 7000 Mons, Belgium
| | - Axel Hemberg
- Center of Innovation and Research in Materials and Polymers, Materia Nova Research Center & University of Mons, 7000 Mons, Belgium
| | - Ana Janković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Franck Meyer
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Vesna Mišković-Stanković
- Faculty of Ecology and Environmental Protection, University Union-Nikola Tesla, Cara Dusana 62-64, 11158 Belgrade, Serbia
| | - Milena Stevanović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Codruta Mirica
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street 15, 400012 Cluj-Napoca, Romania
| | - David Pérez-Morga
- Laboratoire de Parasitologie Moléculaire, Faculté des Sciences & CMMI, Université Libre de Bruxelles (ULB), CP 300. Rue Prof. Jeener & Brachet, 12, 6041 Gosselies, Belgium
| | - Reto Luginbuehl
- Department of Biomedical Material Research, University of Bern, 3008 Bern, Switzerland
- Blaser Swisslube, 3415 Hasle-Rüegsau, Switzerland
| | - Christèle Combes
- Centre Inter-Universitaire de Recherche et d'Ingénierie des Matériaux, CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 allée Emile Monso, BP44362, CEDEX 4, 31030 Toulouse, France
| | - Gabriel Furtos
- Department of Dental Materials, Institute of Research in Chemistry, Babes-Bolyai University-Raluca Ripan, Fantanele Street 30, 400294 Cluj-Napoca, Romania
| | - Véronique Fontaine
- Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Nazemi N, Rajabi N, Aslani Z, Kharaziha M, Kasiri-Asgarani M, Bakhsheshi-Rad HR, Najafinezhad A, Ismail AF, Sharif S, Berto F. Synthesis and characterization of gentamicin loaded ZSM-5 scaffold: Cytocompatibility and antibacterial activity. J Biomater Appl 2023; 37:979-991. [PMID: 36454961 DOI: 10.1177/08853282221140672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Porous structure, biocompatibility and biodegradability, large surface area, and drug-loading ability are some remarkable properties of zeolite structure, making it a great possible option for bone tissue engineering. Herein, we evaluated the potential application of the ZSM-5 scaffold encapsulated GEN with high porosity structure and significant antibacterial properties. The space holder process has been employed as a new fabrication method with interconnected pores and suitable mechanical properties. In this study, for the first time, ZSM-5 scaffolds with GEN drug-loading were fabricated with the space holder method. The results showed excellent open porosity in the range of 70-78% for different GEN concentrations and appropriate mechanical properties. Apatite formation on the scaffold surface was determined with Simulation body fluid (SBF), and a new bone-like apatite layer shaping on all samples confirmed the in vitro bioactivity of ZSM-5-GEN scaffolds. Also, antibacterial properties were investigated against both gram-positive and gram-negative bacteria. The incorporation of various amounts of GEN increased the inhibition zone from 24 to 28 (for E. coli) and 26 to 37 (for S. aureus). In the culture with MG63 cells, great cell viability and high cell proliferation after 7 days of culture were determined.
Collapse
Affiliation(s)
- N Nazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, 201564Islamic Azad University, Najafabad, Iran
| | - N Rajabi
- Department of Materials Engineering, 48456Isfahan University of Technology, Isfahan, Iran
| | - Z Aslani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, 201564Islamic Azad University, Najafabad, Iran
| | - M Kharaziha
- Department of Materials Engineering, 48456Isfahan University of Technology, Isfahan, Iran
| | - M Kasiri-Asgarani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, 201564Islamic Azad University, Najafabad, Iran
| | - H R Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, 201564Islamic Azad University, Najafabad, Iran
| | - A Najafinezhad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, 201564Islamic Azad University, Najafabad, Iran
| | - A F Ismail
- Advanced Membrane Technology Research Center (AMTEC), 54702Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - S Sharif
- Advanced Manufacturing Research Group, Faculty of Mechanical Engineering, 54702Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - F Berto
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
8
|
Wojcik M, Kazimierczak P, Belcarz A, Wilczynska A, Vivcharenko V, Pajchel L, Adaszek L, Przekora A. Biocompatible curdlan-based biomaterials loaded with gentamicin and Zn-doped nano-hydroxyapatite as promising dressing materials for the treatment of infected wounds and prevention of surgical site infections. BIOMATERIALS ADVANCES 2022; 139:213006. [PMID: 35882153 DOI: 10.1016/j.bioadv.2022.213006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
A topical application of antibiotic-loaded wound dressings is recommended only for chronically infected wounds with poor vascularization. Thus, more often dressing materials loaded with antibacterial metal ions are produced. In turn, gentamicin sponges are commonly used to prevent surgical site infections. The aim of this study was to produce curdlan-based biomaterials enriched with gentamicin and zinc (Zn)-doped nano-hydroxyapatite to prevent wound and surgical site infections. Developed biomaterials were subjected to basic microstructural characterization, cytotoxicity test against human skin fibroblasts (BJ cell line), and comprehensive microbiological experiments using Staphylococcus aureus and Pseudomonas aeruginosa strains. To evaluate the in vivo healing capacity of the developed biomaterials, severely infected chronic wound in a veterinary patient was treated with the use of gentamicin-loaded dressing. Fabricated biomaterials were characterized by a highly porous microstructure with high plasma absorption capacity (approx. 7 mL/g for Zn-loaded biomaterial and 13 mL/g for gentamicin-enriched dressing) and optimal water vapor transmission rate (approx. 1700 g/m2/day). Due to the presence of bioceramics, material containing Zn showed slightly higher compressive strength (0.37 MPa) and Young's modulus (3.33 MPa) values compared to gentamicin-loaded biomaterial (0.12 MPa and 1.29 MPa, respectively). Gentamicin-enriched biomaterial showed burst release of the drug within the first 5 h, while, the zinc-loaded biomaterial exhibited a constant gradual release of the zinc ions. Conducted assays showed that developed biomaterials were non-toxic against human skin fibroblasts (cell viability in the range of 71-95 %) and revealed strong bactericidal activity (99.9 % reduction in the number of viable bacterial CFUs in direct contact test) against S. aureus. In the case of P. aeruginosa, only gentamicin-loaded biomaterial exhibited bactericidal effect. Additionally, biomaterials had the ability to uptake, lock in, and kill bacteria within their gel structure, enabling the cleansing of the wound bed at every dressing change. Finally, the treatment of severely infected wound in veterinary patient confirmed the effectiveness of gentamicin-loaded biomaterial. Biomaterial enriched with gentamicin possesses great potential to be used as a dressing material or sponge for the treatment of chronically infected wounds and surgical site infections. In turn, the zinc-loaded biomaterial may be used as a wound dressing to reduce and prevent microbial contamination.
Collapse
Affiliation(s)
- Michal Wojcik
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Paulina Kazimierczak
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Anna Wilczynska
- Department of Epizootiology and Infectious Diseases, University of Life Sciences in Lublin, Gleboka 30 Street, 20-612 Lublin, Poland
| | - Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Lukasz Pajchel
- Department of Analytical Chemistry and Biomaterials, Medical University of Warsaw, Banacha 1 Street, 02-097 Warsaw, Poland
| | - Lukasz Adaszek
- Department of Epizootiology and Infectious Diseases, University of Life Sciences in Lublin, Gleboka 30 Street, 20-612 Lublin, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland.
| |
Collapse
|
9
|
A two-phase and long-lasting multi-antibacterial coating enables titanium biomaterials to prevent implants-related infections. Mater Today Bio 2022; 15:100330. [PMID: 35789634 PMCID: PMC9250043 DOI: 10.1016/j.mtbio.2022.100330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/08/2023] Open
Abstract
In clinical work, the main challenges for titanium (Ti) implantation are bacterial infection and aseptic loosening, which severely affect the survival rate of implants. The first 4 weeks post-operation is the infection peak phase of implants. Inhibiting implant infection caused by bacteria adhesion and proliferation during the early phase as well as promoting subsequent osteointegration is essential for implant success. Herein, we constructed a quaternary ammonium carboxymethyl chitosan (QCMC), collagen (COL Ⅰ) and hydroxyapatite (HAP) multilayers coating on Ti substrates via a modified layer-by-layer (LBL) technique and polymerization of dopamine. The QCMC/COL/HAP coating exhibited a multi-antibacterial property with a two-phase function: (1) At the first 4 weeks post-operation, the covalently bonded QCMC could be slowly degraded and demonstrated both contact-killing and release-killing properties during the infection peak phase; (2) At the second phase, osteogenesis and osseointegration-promotion capabilities were enhanced by HAP under the effective control of infection. The multifilm coating was degraded for more than 45 days under the action of collagenase Ⅰ, and displayed good biocompatibility in vivo and in vitro. Most importantly, the coating exhibited a long-lasting antibacterial activity for more than 3 months, against the main pathogenic bacteria of peri-implant infections. Both in vitro studies and in vivo animal models revealed a desirable osteogenic differentiation capacity of Ti-CCH. Therefore, our study reports a two-phase, long-lasting multi-antibacterial coating on Ti-CCH and indicates potential applications of the modified LBL strategy in orthopaedic fields, which is enlightening for developing practical implant and scaffold materials. Developing a QCMC/COL/HAP multifilm coating via modified layer-by-layer technique and self-polymerization of dopamine. The QCMC/COL/HAP coating exhibited desirable mechanical properties and excellent biocompatibility. The release kinetics endowed the QCMC/COL/HAP coating with multi-antibacterial activity at the first phase after operation. The QCMC/COL/HAP coating could improve osseointegration at the second phase of post-operation.
Collapse
|
10
|
Meng F, Yin Z, Ren X, Geng Z, Su J. Construction of Local Drug Delivery System on Titanium-Based Implants to Improve Osseointegration. Pharmaceutics 2022; 14:pharmaceutics14051069. [PMID: 35631656 PMCID: PMC9146791 DOI: 10.3390/pharmaceutics14051069] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Titanium and its alloys are the most widely applied orthopedic and dental implant materials due to their high biocompatibility, superior corrosion resistance, and outstanding mechanical properties. However, the lack of superior osseointegration remains the main obstacle to successful implantation. Previous traditional surface modification methods of titanium-based implants cannot fully meet the clinical needs of osseointegration. The construction of local drug delivery systems (e.g., antimicrobial drug delivery systems, anti-bone resorption drug delivery systems, etc.) on titanium-based implants has been proved to be an effective strategy to improve osseointegration. Meanwhile, these drug delivery systems can also be combined with traditional surface modification methods, such as anodic oxidation, acid etching, surface coating technology, etc., to achieve desirable and enhanced osseointegration. In this paper, we review the research progress of different local drug delivery systems using titanium-based implants and provide a theoretical basis for further research on drug delivery systems to promote bone–implant integration in the future.
Collapse
Affiliation(s)
- Fanying Meng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China;
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| |
Collapse
|
11
|
Filip Ionescu OL, Mocanu AG, Neacşu IA, Ciocîlteu MV, Rău G, Neamţu J. Biocompatibility Studies on a Collagen-Hydroxyapatite Biomaterial. CURRENT HEALTH SCIENCES JOURNAL 2022; 48:217-225. [PMID: 36320879 PMCID: PMC9590366 DOI: 10.12865/chsj.48.02.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023]
Abstract
The current treatment of osteomyelitis includes systemic antibiotic therapy and a debridement procedure of the formed biofilm and necrotic tissue. Moreover, cements and three-dimensional scaffolds are used both for the delivery of therapeutic agents and as fillers for bone defects. The aim of our research was to test, on cellular cultures, the biocompatibility of a previously synthesized microporous biocomposite containing hydroxyapatite and a collagen matrix including a therapeutic agent (ciprofloxacin and gentamicin). The scaffold was obtained by direct mineralization namely co-precipitation of hydroxyapatite on a collagen matrix.
Collapse
Affiliation(s)
| | | | - Ionela Andreea Neacşu
- Faculty of Appplied Chemistry and Materials Science, Politehnica University of Bucharest, Romania
| | | | - Gabriela Rău
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Johny Neamţu
- Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
12
|
An innovative layer-by-layer coated titanium hydroxide-(gentamicin-polydopamine) as a hybrid drug delivery platform. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Dong W, Li Z, Wen W, Liu B, Wen G. Novel CdS/MOF Cathodic Photoelectrochemical (PEC) Platform for the Detection of Doxorubicin Hydrochloride and Gentamicin Sulfate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57497-57504. [PMID: 34807581 DOI: 10.1021/acsami.1c19481] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nanomaterial selection is critical for photoelectrochemical (PEC) sensing. In this report, a novel cathodic photoelectrochemical (PEC) strategy was proposed for the detection of doxorubicin hydrochloride (Dox) and gentamicin sulfate (CN). The photocathode was synthesized by noncovalently coupling cadmium sulfide (CdS) to the porphyrin-derived metal-organic framework (CdS@PCN-224). This type of assembly created a pleasant interface for the combination of doxorubicin hydrochloride and gentamicin sulfate, resulting in a good CdS@PCN-224 donor-acceptor system. When compared to a single optoelectronic material, its photocurrent is enhanced by unprecedented nine times. This research could pave the way for the realization of PCN-224's enormous potential in PEC sensing.
Collapse
Affiliation(s)
- Wenxia Dong
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhongping Li
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Wen Wen
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Bin Liu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Guangming Wen
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- School of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| |
Collapse
|
14
|
Hadzhieva Z, Boccaccini AR. Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications- A review. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Wang S, Liu X, Lei M, Sun J, Qu X, Liu C. Continuous and controllable electro-fabrication of antimicrobial copper-alginate dressing for infected wounds treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:143. [PMID: 34817703 PMCID: PMC8613166 DOI: 10.1007/s10856-021-06619-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/26/2021] [Indexed: 05/02/2023]
Abstract
The contamination of chronic wound with bacteria especially methicillin-resistant Staphylococcus aureus (MRSA) is considered as the major factor interferencing normal wound healing. There still remain great challenges in developing safe and effective wound dressings with wide-spectrum antibacterial functions. Alginate hydrogel is a common dressing for wound treatment. Copper is one of the trace elements in human body with inherent antibacterial activity. Traditional methods for preparing a structure-controlled copper-alginate antibacterial matrix are difficult however, due to the fast and uncontrolled gelation between alginate and metal ions. In this work, we report an electrodeposition method for rapid fabrication of copper cross-linked alginate antibacterial films (Cu2+-Alg) with controlled structure and copper content, which is relied on an electrical signal controlled release of copper ions from the reaction of insoluble salt Cu2(OH)2CO3 and the generated protons via water electrolysis on anode. The results prove that the physical structure and chemical composition of the electrodeposited Cu2+-Alg films can be continuously modulated by the imposed charges during electrodeposition. In vitro tests demonstrate the film has Cu2+ content-dependent bactericidal activities. Film's cytocompatibility is well controlled by the imposed charges for Cu2+-Alg fabrication. The MRSA infected wound model in vivo also indicates that Cu2+-Alg film can effectively eliminate bacterial infection and suppress host inflammatory responses. We believe this study demonstrates a convenient and controllable strategy to fabricate alginate antibacterial dressings with potential applications for infected wound treatment. More broadly, our work reveals electrodeposition is a general and simple platform to design alginate films with versatile functions.
Collapse
Affiliation(s)
- Shijia Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoli Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junjie Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
16
|
Šugár P, Ludrovcová B, Kalbáčová MH, Šugárová J, Sahul M, Kováčik J. Laser Surface Modification of Powder Metallurgy-Processed Ti-Graphite Composite Which Can Enhance Cells' Osteo-Differentiation. MATERIALS 2021; 14:ma14206067. [PMID: 34683656 PMCID: PMC8537964 DOI: 10.3390/ma14206067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
The paper examines the surface functionalization of a new type of Ti-graphite composite, a dental biomaterial prepared by vacuum low-temperature extrusion of hydrogenated-dehydrogenated titanium powder mixed with graphite flakes. Two experimental surfaces were prepared by laser micromachining applying different levels of incident energy of the fiber nanosecond laser working at 1064 nm wavelength. The surface integrity of the machined surfaces was evaluated, including surface roughness parameters measurement by contact profilometry and confocal laser scanning microscopy. The chemical and phase composition were comprehensively evaluated by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analyses. Finally, the in vitro tests using human mesenchymal stem cells were conducted to compare the influence of the laser processing parameters used on the cell's cultivation and osteo-differentiation. The bioactivity results confirmed that the surface profile with positive kurtosis, platykurtic distribution curve and higher value of peaks spacing exhibited better bioactivity compared to the surface profile with negative kurtosis coefficient, leptokurtic distribution curve and lower peaks spacing.
Collapse
Affiliation(s)
- Peter Šugár
- Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (B.L.); (J.Š.)
- Correspondence: (P.Š.); (M.H.K.); Tel.: +421-917-367-301 (P.Š.); +420-224-965-996 (M.H.K.)
| | - Barbora Ludrovcová
- Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (B.L.); (J.Š.)
| | - Marie Hubálek Kalbáčová
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 5, Praha 2, 128 53 Prague, Czech Republic
- Correspondence: (P.Š.); (M.H.K.); Tel.: +421-917-367-301 (P.Š.); +420-224-965-996 (M.H.K.)
| | - Jana Šugárová
- Institute of Production Technologies, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (B.L.); (J.Š.)
| | - Martin Sahul
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia;
| | - Jaroslav Kováčik
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia;
| |
Collapse
|
17
|
Djošić M, Janković A, Mišković-Stanković V. Electrophoretic Deposition of Biocompatible and Bioactive Hydroxyapatite-Based Coatings on Titanium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5391. [PMID: 34576615 PMCID: PMC8472014 DOI: 10.3390/ma14185391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023]
Abstract
Current trends in biomaterials science address the issue of integrating artificial materials as orthopedic or dental implants with biological materials, e.g., patients' bone tissue. Problems arise due to the simple fact that any surface that promotes biointegration and facilitates osteointegration may also provide a good platform for the rapid growth of bacterial colonies. Infected implant surfaces easily lead to biofilm formation that poses a major healthcare concern since it could have destructive effects and ultimately endanger the patients' life. As of late, research has centered on designing coatings that would eliminate possible infection but neglected to aid bone mineralization. Other strategies yielded surfaces that could promote osseointegration but failed to prevent microbial susceptibility. Needless to say, in order to assure prolonged implant functionality, both coating functions are indispensable and should be addressed simultaneously. This review summarizes progress in designing multifunctional implant coatings that serve as carriers of antibacterial agents with the primary intention of inhibiting bacterial growth on the implant-tissue interface, while still promoting osseointegration.
Collapse
Affiliation(s)
- Marija Djošić
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Bulevar Franš d’Eperea 86, 11000 Belgrade, Serbia;
| | - Ana Janković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Vesna Mišković-Stanković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| |
Collapse
|
18
|
Liu X, Wu Y, Zhao X, Wang Z. Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review. Carbohydr Polym 2021; 267:118179. [PMID: 34119147 DOI: 10.1016/j.carbpol.2021.118179] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 01/16/2023]
Abstract
Organic-inorganic hybrid materials like bone, shells, and teeth can be found in nature, which are usually composed of biomacromolecules and nanoscale inorganic ingredients. Synergy of organic-inorganic components in hybrid materials render them outstanding and versatile performance. Chitosan is commonly used organic materials in bionic hybrid materials since its bioactive properties and could be controllable tailored by various means to meet complex conditions in different applications. Among these fabrication means, hybridization was favored for its convenience and efficiency. This review discusses three kinds of chitosan-based hybrid materials: hybridized with hydroxyapatite, calcium carbonate, and clay respectively, which are the representative of phosphate, carbonate, and hydrous aluminosilicates. Here, we reported the latest developments of the preparation methods, composition, structure and applications of these bioactive hybrid materials, especially in the biomedical field. Despite the great progress was made in bioactive organic-inorganic hybrid materials based on chitosan, some challenges and specific directions are still proposed for future development in this review.
Collapse
Affiliation(s)
- Xiaoyang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuxuan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinchen Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
19
|
Mosaad KE, Shoueir KR, Saied AH, Dewidar MM. New Prospects in Nano Phased Co-substituted Hydroxyapatite Enrolled in Polymeric Nanofiber Mats for Bone Tissue Engineering Applications. Ann Biomed Eng 2021; 49:2006-2029. [PMID: 34378121 DOI: 10.1007/s10439-021-02810-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023]
Abstract
The most common forms of tissue impairment are fracture bones and significant bone disorders caused by multiple traumas or normal aging. Surgical care sometimes necessitates the placement of a temporary or permanent prosthesis, which continues to be a challenge for orthopedic surgeons, including those with large bone defects. Electrospun scaffolds made from natural and synthetic nanofiber-based polymers are studied as natural extracellular matrix (ECM)-like scaffolds for tissue engineering. Besides, nanostructured materials have properties and functions depending on the scale of natural materials such as hydroxyapatite (HAP), ranging from 1 to 100 nm, which activity was proficient upon enrolled in nanofiber mats. The use of nanofibers in combination with nano-HAP has increased the scaffold's ability to replicate the construction of natural bone tissue that is the aim of the present text. In bone engineering, nanofiber substrates facilitate cell adhesion, proliferation, and differentiation, while HAP induces cells to secrete ECM for bone mineralization and development. This review aims to draw the reader's attention to the critical issues with synthetic and natural polymers containing HAP in bone tissue engineering; co-substituted hydroxyapatite has also been mentioned.
Collapse
Affiliation(s)
- Kareem E Mosaad
- Faculty of Engineering, Mechanical Department, Al-Azahar University, Cairo, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
- Institut de Chimie et Procédés Pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Ahmed H Saied
- Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, El-Gaish Street, Kafrelsheikh, Egypt
| | - Montasser M Dewidar
- Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, El-Gaish Street, Kafrelsheikh, Egypt
- Higher Institute of Engineering and Technology, Kafrelsheikh, Egypt
| |
Collapse
|
20
|
Animal models in bicompatibility assessments of implants in soft and hard tissues. VETERINARSKI GLASNIK 2021. [DOI: 10.2298/vetgl210322005p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The ethical dilemmas of using animals as in vivo models in preclinical and
clinical examinations have been increasingly present in recent decades.
Small laboratory animals (rats, rabbits) will continue to be used because
they are cost-effective and permit the formation of statistically testable
cohort groups; a task that, for financial, maintenance and care reasons, is
almost prohibitive for larger animals. Technological advances in the
production of new biomaterials for clinical use are enormous, but screening
tests and methods used to assess biocompatibility lag behind these advances.
The assessment of biological responses is slow and based on millennial
recovery mechanisms in eukaryotic organisms. Therefore, the goal of
researchers in this field is to re-evaluate old methods of biocompatibility
assessment and introduce new methods of evaluation, especially for in vivo
testing. In that sense, a revision of the ISO standards was planned and
conducted in 2017, which insisted on cytotoxicity testing in cell lines and
produced concrete proposals on how biocompatibility should be quantified. In
vivo biocompatibility evaluation of biomaterials used for soft tissue
recovery commonly utilises rats. Rabbits are recommended for implants used
for hard tissues, because of the rabbit?s size, the possibility of
implanting the biomaterials on a larger bone surface, and because of the
peculiarities of rabbit bone tissue that favours rapid recovery after bone
defects and enables easy reading of the results.
Collapse
|
21
|
Osteoconductive and Osteoinductive Surface Modifications of Biomaterials for Bone Regeneration: A Concise Review. COATINGS 2020. [DOI: 10.3390/coatings10100971] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The main aim of bone tissue engineering is to fabricate highly biocompatible, osteoconductive and/or osteoinductive biomaterials for tissue regeneration. Bone implants should support bone growth at the implantation site via promotion of osteoblast adhesion, proliferation, and formation of bone extracellular matrix. Moreover, a very desired feature of biomaterials for clinical applications is their osteoinductivity, which means the ability of the material to induce osteogenic differentiation of mesenchymal stem cells toward bone-building cells (osteoblasts). Nevertheless, the development of completely biocompatible biomaterials with appropriate physicochemical and mechanical properties poses a great challenge for the researchers. Thus, the current trend in the engineering of biomaterials focuses on the surface modifications to improve biological properties of bone implants. This review presents the most recent findings concerning surface modifications of biomaterials to improve their osteoconductivity and osteoinductivity. The article describes two types of surface modifications: (1) Additive and (2) subtractive, indicating biological effects of the resultant surfaces in vitro and/or in vivo. The review article summarizes known additive modifications, such as plasma treatment, magnetron sputtering, and preparation of inorganic, organic, and composite coatings on the implants. It also presents some common subtractive processes applied for surface modifications of the biomaterials (i.e., acid etching, sand blasting, grit blasting, sand-blasted large-grit acid etched (SLA), anodizing, and laser methods). In summary, the article is an excellent compendium on the surface modifications and development of advanced osteoconductive and/or osteoinductive coatings on biomaterials for bone regeneration.
Collapse
|