1
|
Beaudier P, Vilotte F, Simon M, Muggiolu G, Le Trequesser Q, Devès G, Plawinski L, Mikael A, Caron J, Kantor G, Dupuy D, Delville MH, Barberet P, Seznec H. Sarcoma cell-specific radiation sensitization by titanate scrolled nanosheets: insights from physicochemical analysis and transcriptomic profiling. Sci Rep 2024; 14:3295. [PMID: 38332121 PMCID: PMC10853196 DOI: 10.1038/s41598-024-53847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
This study aimed to explore the potential of metal oxides such as Titanate Scrolled Nanosheets (TNs) in improving the radiosensitivity of sarcoma cell lines. Enhancing the response of cancer cells to radiation therapy is crucial, and one promising approach involves utilizing metal oxide nanoparticles. We focused on the impact of exposing two human sarcoma cell lines to both TNs and ionizing radiation (IR). Our research was prompted by previous in vitro toxicity assessments, revealing a correlation between TNs' toxicity and alterations in intracellular calcium homeostasis. A hydrothermal process using titanium dioxide powder in an alkaline solution produced the TNs. Our study quantified the intracellular content of TNs and analyzed their impact on radiation-induced responses. This assessment encompassed PIXE analysis, cell proliferation, and transcriptomic analysis. We observed that sarcoma cells internalized TNs, causing alterations in intracellular calcium homeostasis. We also found that irradiation influence intracellular calcium levels. Transcriptomic analysis revealed marked disparities in the gene expression patterns between the two sarcoma cell lines, suggesting a potential cell-line-dependent nano-sensitization to IR. These results significantly advance our comprehension of the interplay between TNs, IR, and cancer cells, promising potential enhancement of radiation therapy efficiency.
Collapse
Affiliation(s)
- Pierre Beaudier
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
- U1212, IECB, INSERM, University of Bordeaux, 33607, Pessac, France
| | - Florent Vilotte
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
- Radiation Oncology Unit, Institut Bergonié, 33076, Bordeaux, France
| | - Marina Simon
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
| | - Giovanna Muggiolu
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
| | | | - Guillaume Devès
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
| | - Laurent Plawinski
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
| | - Antoine Mikael
- Radiation Oncology Unit, Institut Bergonié, 33076, Bordeaux, France
| | - Jérôme Caron
- Radiation Oncology Unit, Institut Bergonié, 33076, Bordeaux, France
| | - Guy Kantor
- Radiation Oncology Unit, Institut Bergonié, 33076, Bordeaux, France
| | - Denis Dupuy
- U1212, IECB, INSERM, University of Bordeaux, 33607, Pessac, France
| | | | - Philippe Barberet
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France
| | - Hervé Seznec
- UMR 5797, LP2I Bordeaux, CNRS, University of Bordeaux, 33170, Gradignan, France.
| |
Collapse
|
2
|
Narewadikar N, Pedanekar R, Parale V, Park H, Rajpure K. Spray deposited yttrium incorporated TiO2 photoelectrode for efficient photoelectrocatalytic degradation of organic pollutants. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|