1
|
Ghadirian-Arani Z, Sadeghzadeh-Attar A, Khorasani M. Construction of Ba-doped Ag 3PO 4/SnO 2 type-II nanocomposites as a promising photocatalyst for boosting photocatalytic degradation of BY28 dye and redox conversion of Cr(VI)/Cr(III). Heliyon 2024; 10:e38328. [PMID: 39397901 PMCID: PMC11470498 DOI: 10.1016/j.heliyon.2024.e38328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
In the present study, Ba-doped Ag3PO4/SnO2 type-II heterojunction nanocomposites were fabricated and systemically investigated for the degradation of basic yellow 28 (BY28) dye and Cr(VI) reduction in the photocatalytic process under visible-light irradiation. XRD, XPS, FESEM, DRS, and PL analyses were performed to determine the characterization of synthesized photocatalysts. The optimal 1.5 wt% Ba-doped Ag3PO4/SnO2 nanocomposite exhibited an efficient photocatalytic activity with rate constant of 0.0491 min-1 for BY28 degradation and 0.0261 min-1 for Cr(VI) reduction, which is 13.3 and 7.5 times higher than that of the SnO2 nanorods. Such enhanced performance can arise from the one-dimensional structure, extended light absorption toward the visible region, formation of the type II heterojunction, the new defect-related energy states, and efficient charge separation. Furthermore, the photostability of the photocatalysts was studied and a plausible photocatalytic mechanism was proposed.
Collapse
Affiliation(s)
- Zeinab Ghadirian-Arani
- Department of Metallurgy and Materials Engineering, University of Kashan, Kashan, P.O. Box 87317-53153, Iran
| | - Abbas Sadeghzadeh-Attar
- Department of Metallurgy and Materials Engineering, University of Kashan, Kashan, P.O. Box 87317-53153, Iran
| | - Mohammad Khorasani
- Department of Metallurgy and Materials Engineering, University of Kashan, Kashan, P.O. Box 87317-53153, Iran
| |
Collapse
|
2
|
Ribeiro LK, Assis M, Moreira AJ, Abreu CB, Gebara RC, Grasser GA, Fukushima HCS, Borra RC, Melão MGG, Longo E, Mascaro LH. Striking the balance: Unveiling the interplay between photocatalytic efficiency and toxicity of La-incorporated Ag 3PO 4. CHEMOSPHERE 2024; 359:142352. [PMID: 38759808 DOI: 10.1016/j.chemosphere.2024.142352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Persistent molecules, such as pesticides, herbicides, and pharmaceuticals, pose significant threats to both the environment and human health. Advancements in developing efficient photocatalysts for degrading these substances can play a fundamental role in remediating contaminated environments, thereby enhancing safety for all forms of life. This study investigates the enhancement of photocatalytic efficiency achieved by incorporating La3+ into Ag3PO4, using the co-precipitation method in an aqueous medium. These materials were utilized in the photocatalytic degradation of Rhodamine B (RhB) and Ciprofloxacin (CIP) under visible light irradiation, with monitoring conducted through high-performance liquid chromatography (HPLC). The synthesized materials exhibited improved stability and photodegradation levels for RhB. Particularly noteworthy was the 2% La3+-incorporated sample (APL2), which achieved a 32.6% mineralization of CIP, nearly three times higher than pure Ag3PO4. Toxicological analysis of the residue from CIP photodegradation using the microalga Raphidocelis subcapitata revealed high toxicity due to the leaching of Ag + ions from the catalyst. This underscores the necessity for cautious wastewater disposal after using the photocatalyst. The toxicity of the APL2 photocatalysts was thoroughly assessed through comprehensive toxicological tests involving embryo development in Danio rerio, revealing its potential to induce death and malformations in zebrafish embryos, even at low concentrations. This emphasizes the importance of meticulous management. Essentially, this study adeptly delineated a thorough toxicological profile intricately intertwined with the photocatalytic efficacy of newly developed catalysts and the resultant waste produced, prompting deliberations on the disposal of degraded materials post-exposure to photocatalysts.
Collapse
Affiliation(s)
- Lara K Ribeiro
- Nanostructured Materials Laboratory Manufactured Electrochemically (NanoFAEL), Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil; Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil.
| | - Marcelo Assis
- Department of Analytical and Physical Chemistry, University Jaume I (UJI), Castelló, 12071, Spain.
| | - Ailton J Moreira
- Universidade Estadual Paulista (UNESP), Instituto de Química, 14800-060 Araraquara, SP, Brazil
| | - Cínthia B Abreu
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Renan C Gebara
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Giovanna A Grasser
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Hirla C S Fukushima
- Laboratory of Applied Immunology (LIA), Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil
| | - Ricardo C Borra
- Laboratory of Applied Immunology (LIA), Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil
| | - Maria G G Melão
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil
| | - Elson Longo
- Nanostructured Materials Laboratory Manufactured Electrochemically (NanoFAEL), Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil; Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Lucia H Mascaro
- Nanostructured Materials Laboratory Manufactured Electrochemically (NanoFAEL), Federal University of São Carlos (UFSCar), São Carlos, 13565-905, Brazil; Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
3
|
Takeno M, Nobre FX, da Costa FF, Botelho do Nascimento MV, Pessoa Júnior WA, Araújo Júnior EA, Sousa GDS, de Sá ML, Gurgel RS, Albuquerque P, Matos JMD, Leyet Ruiz Y, Grandini CR. Solvent Effect on the Structural, Optical, Morphology, and Antimicrobial Activity of Silver Phosphate Microcrystals by Conventional Hydrothermal Method. ACS OMEGA 2024; 9:23069-23085. [PMID: 38826548 PMCID: PMC11137729 DOI: 10.1021/acsomega.4c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
The design of particle size and morphology are a promising approach to investigating the properties exhibited by different types of materials. In the present study, the silver phosphate microcrystals (Ag3PO4) were first time synthesized using the hydrothermal and solvothermal method by combination of the solvents water/isopropyl alcohol (SP-IA), water/acetone (SP-AC), water/ammonium hydroxide (AP-AH), all in a ratio of 1:1 (v/v). The synthesized materials were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, and Raman vibrational spectroscopy, where it was confirmed that the pure phase was achieved for all prepared samples. The study of the optical properties by UV-vis diffuse reflectance spectroscopy (UV-vis/DRS) and colorimetry revealed that the obtained materials have an optical bandgap between 2.30 and 2.32 eV. The FE-SEM images collected revealed different morphologies for the synthesized materials, with a predominance of tetraploid-shaped microcrystals for the SP-AC sample, rods for the SP-IA sample, cubes and polyhedral for the SP-WT sample and condensed polyhedral for the SP-AH sample. The photocatalytic performance against the Rhodamine B dye (RhB) was 100%, 98.2%, 94.2%, and 87.8%, using the samples SP-AC, SP-IA, SP-WT, and SP-AH as photocatalyst at time of 12 min. On the other hand, the antimicrobial performance of SP-AC sample showed superior performance, resulting in the minimum inhibitory concentration-MIC of 7.81 μg mL-1 for the strain of E. coli, 7.81 μg mL-1 for the strain of E. aureus, 15.62 μg mL-1 for the strain of P. auruginosa, and 15.62 μg mL-1 for the strains of C. albicans. In this way, was synthesized a promissory antimicrobial and photocatalyst material, through an easy and cost-effective method.
Collapse
Affiliation(s)
- Mitsuo
Lopes Takeno
- Department
of Chemistry, Environment, and Food (DQA), Group of Energy Resources
and Nanomaterials (GREEN), Federal Institute of Education, Science and Technology of Amazonas, Campus Manaus Centro, Manaus, 69020-120, AM Brazil
| | - Francisco Xavier Nobre
- Department
of Chemistry, Environment, and Food (DQA), Group of Energy Resources
and Nanomaterials (GREEN), Federal Institute of Education, Science and Technology of Amazonas, Campus Manaus Centro, Manaus, 69020-120, AM Brazil
| | - Fagner Ferreira da Costa
- Department
of Chemistry, Environment, and Food (DQA), Group of Energy Resources
and Nanomaterials (GREEN), Federal Institute of Education, Science and Technology of Amazonas, Campus Manaus Centro, Manaus, 69020-120, AM Brazil
| | - Marcus Valério Botelho do Nascimento
- Department
of Chemistry, Environment, and Food (DQA), Group of Energy Resources
and Nanomaterials (GREEN), Federal Institute of Education, Science and Technology of Amazonas, Campus Manaus Centro, Manaus, 69020-120, AM Brazil
| | - Wanison André
Gil Pessoa Júnior
- Department
of Chemistry, Environment, and Food (DQA), Group of Energy Resources
and Nanomaterials (GREEN), Federal Institute of Education, Science and Technology of Amazonas, Campus Manaus Centro, Manaus, 69020-120, AM Brazil
| | - Edgar Alves Araújo Júnior
- Interdisciplinar
Laboratory of Advanced Materials-LIMAV, Federal University of Piauí-UFPI, Teresina, 64049-550 PI Brazil
| | - Giancarlo da Silva Sousa
- Interdisciplinar
Laboratory of Advanced Materials-LIMAV, Federal University of Piauí-UFPI, Teresina, 64049-550 PI Brazil
| | - Marcel Leiner de Sá
- Interdisciplinar
Laboratory of Advanced Materials-LIMAV, Federal University of Piauí-UFPI, Teresina, 64049-550 PI Brazil
| | - Raiana Silveira Gurgel
- Research
Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil
| | - Patrícia
Melchionna Albuquerque
- Research
Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil
| | - José Milton
Elias de Matos
- Interdisciplinar
Laboratory of Advanced Materials-LIMAV, Federal University of Piauí-UFPI, Teresina, 64049-550 PI Brazil
| | - Yurimiler Leyet Ruiz
- Department
of Materials Engineering, Laboratory of Processing of Technological
Materials (LPMaT), Federal University of
Amazonas, Faculty of Technology, Rua Av. General Rodrigo Otávio Jordão Ramos, 1200,
Coroado I, Manaus, 69067-005, Brazil
| | - Carlos Roberto Grandini
- Laboratório
de Anelasticidade e Biomateriais, UNESP−Universidade
Estadual Paulista, Bauru 17033-360, SP Brazil
| |
Collapse
|
4
|
Khiar H, Janani FZ, Sadiq M, Mansouri S, Puga A, Barka N. Effect of indium (III) doping on Ag 3PO 4 catalyst stabilization and its visible light photocatalytic activity toward toxic dyes in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100785-100798. [PMID: 37640975 DOI: 10.1007/s11356-023-29429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Indium(III)-doped Ag3PO4 (In-AgP) catalysts at different weight percentages were elaborated by co-precipitation and subjected to XRD, SEM, UV-vis DRS, and FTIR characterization. The prepared catalysts were of spherical morphology and their diameters depends on doping dosage. The whole materials crystallize in a centered cubic system with a slight dissimilation in the positions of the characteristic peaks as a function of indium dosage. The photocatalytic performance of the catalysts under visible light was investigated in the photocatalytic degradation of anionic dye (methyl orange (MO)) and cationic dye (auramine O (AO)) in moderate acid, neutral, and basic pH conditions. Results showed more selectivity to MO than AO. Furthermore, indium-doped samples are more active in the acidic medium than the pure Ag3PO4 (AgP), and 10%In-AgP catalyst presents the highest activity. The degradation efficiency reached 99 % in 60 min for MO and in 180 min for AO. In addition, a high recycling stability was achieved and the catalyst retains its degradation capacity above 99 % after five cycles.
Collapse
Affiliation(s)
- Habiba Khiar
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, 145, 2500, Khouribga, BP, Morocco
| | - Fatima Zahra Janani
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, 145, 2500, Khouribga, BP, Morocco
| | - M'hamed Sadiq
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, 145, 2500, Khouribga, BP, Morocco
| | - Said Mansouri
- Materials Science Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Alberto Puga
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007, Tarragona, Spain
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, 145, 2500, Khouribga, BP, Morocco.
| |
Collapse
|
5
|
Khan AS, Alhamdan Y, Alibrahim H, Almulhim KS, Nawaz M, Ahmed SZ, Aljuaid K, Ateeq IS, Akhtar S, Ansari MA, Siddiqui IA. Analyses of Experimental Dental Adhesives Based on Zirconia/Silver Phosphate Nanoparticles. Polymers (Basel) 2023; 15:2614. [PMID: 37376260 DOI: 10.3390/polym15122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to evaluate the incorporation of zirconia/silver phosphate nanoparticles to develop experimental dental adhesives and to measure their physical and mechanical properties. The nanoparticles were synthesized by the sonication method, and the phase purity, morphological pattern, and antibacterial properties with Staphylococcus aureus and Pseudomonas aeruginosa were assessed. The silanized nanoparticles were incorporated (0, 0.15, 0.25, and 0.5 wt.%) into the photoactivated dimethacrylate resins. The degree of conversion (DC) was assessed, followed by the micro-hardness and flexural strength/modulus test. Long-term color stability was investigated. The bond strength with the dentin surface was conducted on days 1 and 30. The transmission electron microscopy and X-ray diffractogram confirmed the nano-structure and phase purity of the particles. The nanoparticles showed antibacterial activities against both strains and inhibited biofilm formation. The DC range of the experimental groups was 55-66%. The micro-hardness and flexural strength increased with the concentration of nanoparticles in the resin. The 0.5 wt.% group showed significantly high micro-hardness values, whereas a non-significant difference was observed between the experimental groups for flexural strength. The bond strength was higher on day 1 than on day 30, and a significant difference was observed between the two periods. At day 30, the 0.5 wt.% showed significantly higher values compared to other groups. Long-term color stability was observed for all the samples. The experimental adhesives showed promising results and potential to be used for clinical applications. However, further investigations such as antibacterial, penetration depth, and cytocompatibility are required.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Yasmin Alhamdan
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Hala Alibrahim
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Khalid S Almulhim
- Department of Restorative Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Khalid Aljuaid
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ijlal Shahrukh Ateeq
- Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Intisar Ahmad Siddiqui
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| |
Collapse
|
6
|
Wang Y, Liu Y, Li X, Liu Y, Wang F, Huang Y, Du B, Qian Y, Lv L. Research on synthesis and property of nano-textured Sc 2O 3-MgO efficient antibacterial agents. J Biol Inorg Chem 2023; 28:329-343. [PMID: 36877275 DOI: 10.1007/s00775-023-01995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/26/2023] [Indexed: 03/07/2023]
Abstract
In order to obtain the inorganic efficient antibacterial agents, the means of ion doping and morphology construction in this research are used to enhance the antibacterial property of nano-MgO, which is according to the "oxidative damage mechanism" and "contact mechanism". In this work, the nano-textured Sc2O3-MgO are synthesized by doping Sc3+ in nano-MgO lattice through calcining at 600 °C. When the Sc3+ content reaches 10%, the nanotextures on the powders surface are pretty clearly visible and uniform, and the specific surface area and the oxygen vacancy are ideal, so that the 10% Sc3+-doped powders (SM-10) has the excellent antibacterial property against E. coli and S. aureus (MBC = 0.03 mg/mL). The efficient antibacterial agents in this research have a better antibacterial effect than the 0% Sc3+-doped powders (SM-0, MBC = 0.20 mg/mL) and the commercial nano-MgO (CM, MBC = 0.40 mg/mL), which have application prospects in the field of antibacterial.
Collapse
Affiliation(s)
- Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yanjing Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiyue Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yuezhou Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Fuming Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yaping Huang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Bing Du
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yongfang Qian
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Lihua Lv
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
7
|
Qureshi F, Nawaz M, Ansari MA, Khan FA, Berekaa MM, Abubshait SA, Al-Mutairi R, Paul AK, Nissapatorn V, de Lourdes Pereira M, Wilairatana P. Synthesis of M-Ag 3PO 4, (M = Se, Ag, Ta) Nanoparticles and Their Antibacterial and Cytotoxicity Study. Int J Mol Sci 2022; 23:11403. [PMID: 36232708 PMCID: PMC9569642 DOI: 10.3390/ijms231911403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Silver Phosphate, Ag3PO4, being a highly capable clinical molecule, an ultrasonic method was employed to synthesize the M-Ag3PO4, (M = Se, Ag, Ta) nanoparticles which were evaluated for antibacterial and cytotoxicity activities post-characterization. Escherichia coli and Staphylococcus aureus were used for antibacterial testing and the effects of sonication on bacterial growth with sub-MIC values of M-Ag3PO4 nanoparticles were examined. The effect of M-Ag3PO4 nanoparticles on human colorectal carcinoma cells (HCT-116) and human cervical carcinoma cells (HeLa cells) was examined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay and DAPI (4′,6-diamidino-2-phenylindole) staining. Additionally, we analyzed the effect of nanoparticles on normal and non-cancerous human embryonic kidney cells (HEK-293). Ag-Ag3PO4 exhibited enhanced antibacterial activity followed by Ta-Ag3PO4, Ag3PO4, and Se-Ag3PO4 nanoparticles against E. coli. Whereas the order of antibacterial activity against Staphylococcus aureus was Ag3PO4 > Ag-Ag3PO4 > Ta-Ag3PO4 > Se-Ag3PO4, respectively. Percentage inhibition of E. coli was 98.27, 74.38, 100, and 94.2%, while percentage inhibition of S. aureus was 25.53, 80.28, 99.36, and 20.22% after treatment with Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4, respectively. The MTT assay shows a significant decline in the cell viability after treating with M-Ag3PO4 nanoparticles. The IC50 values for Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 on HCT-116 were 39.44, 28.33, 60.24, 58.34 µg/mL; whereas for HeLa cells, they were 65.25, 61.27, 75.52, 72.82 µg/mL, respectively. M-Ag3PO4 nanoparticles did not inhibit HEK-293 cells. Apoptotic assay revealed that the numbers of DAPI stained cells were significantly lower in the M-Ag3PO4-treated cells versus control.
Collapse
Affiliation(s)
- Faiza Qureshi
- Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mahmoud M. Berekaa
- Environmental Health Department, College of Public Health, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samar A. Abubshait
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Chemistry, College of Science and Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rayyanah Al-Mutairi
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
8
|
Ribeiro LK, Assis M, Lima LR, Coelho D, Gonçalves MO, Paiva RS, Moraes LN, Almeida LF, Lipsky F, San-Miguel MA, Mascaro LH, Grotto RMT, Sousa CP, Rosa ILV, Cruz SA, Andrés J, Longo E. Bioactive Ag 3PO 4/Polypropylene Composites for Inactivation of SARS-CoV-2 and Other Important Public Health Pathogens. J Phys Chem B 2021; 125:10866-10875. [PMID: 34546760 PMCID: PMC8482321 DOI: 10.1021/acs.jpcb.1c05225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/08/2021] [Indexed: 01/08/2023]
Abstract
The current unprecedented coronavirus pandemic (COVID-19) is increasingly demanding advanced materials and new technologies to protect us and inactivate SARS-CoV-2. In this research work, we report the manufacture of Ag3PO4 (AP)/polypropylene (PP) composites using a simple method and also reveal their long-term anti-SARS-CoV-2 activity. This composite shows superior antibacterial (against Staphylococcus aureus and Escherichia coli) and antifungal activity (against Candida albicans), thus having potential for a variety of technological applications. The as-manufactured materials were characterized by XRD, Raman spectroscopy, FTIR spectroscopy, AFM, UV-vis spectroscopy, rheology, SEM, and contact angle to confirm their structural integrity. Based on the results of first-principles calculations at the density functional level, a plausible reaction mechanism for the initial events associated with the generation of both hydroxyl radical •OH and superoxide radical anion •O2- in the most reactive (110) surface of AP was proposed. AP/PP composites proved to be an attractive avenue to provide human beings with a broad spectrum of biocide activity.
Collapse
Affiliation(s)
- Lara K. Ribeiro
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Marcelo Assis
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
| | - Lais R. Lima
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Dyovani Coelho
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Mariana O. Gonçalves
- Biomolecules
and Microbiology Laboratory (LaMiB), Biotechnology Graduation Program, Federal University of São Carlos (UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Robert S. Paiva
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Leonardo N. Moraes
- School
of Agriculture; São Paulo State University
(Unesp), Botucatu, São Paulo 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School; São Paulo State University (Unesp), Botucatu, São Paulo 18618-687, Brazil
| | - Lauana F. Almeida
- School
of Agriculture; São Paulo State University
(Unesp), Botucatu, São Paulo 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School; São Paulo State University (Unesp), Botucatu, São Paulo 18618-687, Brazil
| | - Felipe Lipsky
- Institute
of Chemistry, State University of Campinas
(Unicamp), Campinas, São Paulo 13083-970, Brazil
| | - Miguel A. San-Miguel
- Institute
of Chemistry, State University of Campinas
(Unicamp), Campinas, São Paulo 13083-970, Brazil
| | - Lúcia H. Mascaro
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Rejane M. T. Grotto
- School
of Agriculture; São Paulo State University
(Unesp), Botucatu, São Paulo 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School; São Paulo State University (Unesp), Botucatu, São Paulo 18618-687, Brazil
| | - Cristina P. Sousa
- Biomolecules
and Microbiology Laboratory (LaMiB), Biotechnology Graduation Program, Federal University of São Carlos (UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Ieda L. V. Rosa
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| | - Sandra A. Cruz
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Juan Andrés
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
| | - Elson Longo
- CDMF,
LIEC, Federal University of São Carlos—(UFSCar), São Carlos, São
Paulo 13565-905, Brazil
| |
Collapse
|