1
|
Pasupathi S, Rahman SSA, Karuppiah S. Insights on comprehensive characterization of distinct growth stages of Sterculia foetida pod as a potential feedstock for bioethanol production. Sci Rep 2025; 15:15448. [PMID: 40316661 PMCID: PMC12048496 DOI: 10.1038/s41598-025-99197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
Lignocellulosic biomass explores a sustainable and renewable energy source that could provide a suitable solution to energy demands. However, diversity is the main obstacle that hinders the biorefinery approach to bioethanol production. In this study, the non-edible feedstock, Sterculia foetida pod, green-colored skin (GSFP), and brown-colored skin (BSFP) were used as feedstock for the production of bioethanol. To examine the comprehensive characterization of selected biomass, namely BSFP and GSFP, the various methods, namely physicochemical analysis, proximate analysis, ultimate (CHNS) analysis, bulk density, and calorific value were employed. The functional group analysis, thermal stability, surface morphology, and crystallinity index for biomasses were characterized by FTIR spectroscopy, Thermo-gravimetric (TGA) analysis, scanning electron microscope (SEM), and XRD analysis. The elemental and chemical composition of GSFP and BSFP were extensively evaluated using different methods. The value-added precursors, namely cellulose and lignin isolated from GSFP and BSFP. The cellulose content in GSFP and BSFP pods was found to be 35.28 ± 3.39% and 33.95 ± 4.49% and the lignin content was 17.37 ± 3.54% and 20.79 ± 8.78% respectively. The obtained cellulose from GSFP and BSFP was subjected to two-step acid hydrolysis on different SL ratio (1:10-5:10) to prepare fermentable sugars at different concentration (g/L). Based on the different sugar concentration, the bioethanol concentration (0.91 to 18.78 g/L; 0.23 to 12.23 g/L) and specific bioethanol yield (0.44 to 1.52 g/g; 0.13 to 1.55 g/g) increased for both BSFP and GSFP respectively.
Collapse
Affiliation(s)
- Saroja Pasupathi
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Sameeha Syed Abdul Rahman
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Sugumaran Karuppiah
- Bioprocess Engineering Laboratory, Centre for Bioenergy, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
2
|
Cheng MH, Singh S, Carr Clennon AN, Dien BS, Singh V. Production of Designer Xylose-Acetic Acid Enriched Hydrolysate from Bioenergy Sorghum, Oilcane, and Energycane Bagasses. BIORESOURCE TECHNOLOGY 2023; 380:129104. [PMID: 37121520 DOI: 10.1016/j.biortech.2023.129104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Xylan accounts for up to 40% of the structural carbohydrates in lignocellulosic feedstocks. Along with xylan, acetic acid in sources of hemicellulose can be recovered and marketed as a commodity chemical. Through vibrant bioprocessing innovations, converting xylose and acetic acid into high-value bioproducts via microbial cultures improves the feasibility of lignocellulosic biorefineries. Enzymatic hydrolysis using xylanase supplemented with acetylxylan esterase (AXE) was applied to prepare xylose-acetic acid enriched hydrolysates from bioenergy sorghum, oilcane, or energycane using sequential hydrothermal-mechanical pretreatment. Various biomass solids contents (15 to 25%, w/v) and xylanase loadings (140 to 280 FXU/g biomass) were tested to maximize xylose and acetic acid titers. The xylose and acetic acid yields were significantly improved by supplementing with AXE. The optimal yields of xylose and acetic acid were 92.29% and 62.26% obtained from hydrolyzing energycane and oilcane at 25% and 15% w/v biomass solids using 280 FXU xylanase/g biomass and AXE, respectively.
Collapse
Affiliation(s)
- Ming-Hsun Cheng
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Department of Natural Resources and Society, College of Natural Resources, University of Idaho, 995 MK Simpson Blvd, Idaho Falls, ID 83401, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuchi Singh
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aidan N Carr Clennon
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA
| | - Bruce S Dien
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, 1815 North University Street, Peoria, IL 61604, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Ajayo PC, Wang Q, Huang M, Zhao L, Tian D, He J, Fang D, Hu J, Shen F. High bioethanol titer and yield from phosphoric acid plus hydrogen peroxide pretreated paper mulberry wood through optimization of simultaneous saccharification and fermentation. BIORESOURCE TECHNOLOGY 2023; 374:128759. [PMID: 36801446 DOI: 10.1016/j.biortech.2023.128759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The optimization of key simultaneous saccharification and fermentation (SSF) parameters for bioethanol production from phosphoric acid plus hydrogen peroxide pretreated paper mulberry wood was carried out under two isothermal scenarios; the yeast optimum and trade-off temperatures of 35 and 38 °C, respectively. The optimal conditions established for SSF at 35 °C (solid loading: 16%; enzyme dosage: 9.8 mg protein/g glucan; and yeast concentration: 6.5 g/L) achieved high ethanol titer and yield of 77.34 g/L and 84.60% (0.432 g/g), respectively. These corresponded to 1.2 and 1.3-folds increases, compared to the results of the optimal SSF at a relatively higher temperature of 38 °C. The information from this study would prove beneficial in reducing process energy demands to some extent, while also helping to achieve high levels of both ethanol concentration and yield that are desired in cellulosic ethanol production.
Collapse
Affiliation(s)
- Pleasure Chisom Ajayo
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Qing Wang
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mei Huang
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Li Zhao
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinsong He
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dexin Fang
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinguang Hu
- Chemical and Petroleum Engineering, Schulich School of Engineering, The University of Calgary, Calgary T2N 4H9, Canada
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
4
|
Biomass Deacetylation at Moderate Solid Loading Improves Sugar Recovery and Succinic Acid Production. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Biomass deacetylation with alkali prior to dilute acid pretreatment can be a promising approach to reduce the toxicity of the resulting hydrolysates and improve microbial fermentation. In this study, the effect of mild alkaline treatment of oil palm trunk (OPT) biomass on succinic acid production was evaluated. Deacetylation was carried out under different conditions: NaOH loadings (1–5%, w/v) and reaction times (15–90 min) at 100 °C. Deacetylation using 1% (w/v) NaOH within 15 min was sufficient to achieve a high acetic acid removal of 5.8 g/L with minimal sugar loss. Deacetylation under this condition resulted in a total sugar concentration of 55.8 g/L (18.0 g/L xylose and 37.8 g/L glucose), which was 37% higher than that of non-deacetylated OPT. Subsequently, succinic acid production using Actinobacillus succinogenes was also improved by 42% and 13% in terms of productivity and yield, respectively, at 10% (w/v) solid loading. This further demonstrated that mild alkaline treatment prior to dilute acid pretreatment is a promising strategy to improve succinic acid production. This study provides a facile approach for reducing the most influential inhibitory effect of acetic acid, and it can be applied to the exploitation of lignocellulosic biomass resources for succinic acid, biofuels, and/or other biochemical co-production in the future.
Collapse
|
5
|
Zhang B, Liu X, Bao J. High solids loading pretreatment: The core of lignocellulose biorefinery as an industrial technology - An overview. BIORESOURCE TECHNOLOGY 2023; 369:128334. [PMID: 36403909 DOI: 10.1016/j.biortech.2022.128334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment is the first and most determinative, yet the least mature step of lignocellulose biorefinery chain. The current stagnation of biorefinery commercialization indicates the barriers of the existing pretreatment technologies are needed to be unlocked. This review focused on one of the core factors, the high lignocellulose solids loading in pretreatment. The high solids loading of pretreatment significantly reduces water input, energy requirement, toxic compound discharge, solid/liquid separation costs, and carbon dioxide emissions, improves the titers of sugars and biproducts to meet the industrial requirements. Meanwhile, lignocellulose feedstock after high solids loading pretreatment is compatible with the existing logistics system for densification, packaging, storage, and transportation. Both the technical-economic analysis and the cellulosic ethanol conversion performance suggest that the solids loading in the pretreatment step need to be further elevated towards an industrial technology and the effective solutions should be proposed to the technical barriers in high solids loading pretreatment operations.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiucai Liu
- Cathay Biotech Inc, 1690 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
6
|
Acetate-rich Cellulosic Hydrolysates and Their Bioconversion Using Yeasts. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhang B, Wu L, Wang Y, Li J, Zhan B, Bao J. Re-examination of dilute acid hydrolysis of lignocellulose for production of cellulosic ethanol after de-bottlenecking the inhibitor barrier. J Biotechnol 2022; 353:36-43. [PMID: 35597330 DOI: 10.1016/j.jbiotec.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Dilute acid hydrolysis of lignocellulose biomass had been used for production of cellulosic ethanol since 1940s. The major technical barrier is the acid catalyzed dehydration of monosaccharides to furan aldehydes (furfural and 5-hydroxymethylfurfural), resulting in the high loss of fermentable sugars and significant inhibition on the fermentability of ethanologenic strains. This study re-examined the dilute acid hydrolysis of corn stover and cellulosic ethanol fermentation after a novel biodetoxification approach was introduced to de-bottleneck the inhibitor barrier. The cocktail of sulfuric acid, phosphoric acid and oxalic acid hydrolyzed corn stover to the 51.1g/L of glucose (0.50g/g cellulose) and 18.1g/L of xylose (0.22g/g xylan). The furfural, 5-hydroxymethylfurfural and acetic acid in the corn stover hydrolysate were completely removed by Paecilomyces variotii FN89, leading to the successful ethanol fermentation of 24.2g/L, corresponding to 72.6kg per metric ton of dry corn stover. No wastewater streams, solid wastes and toxic compounds were generated in hydrolysis, biodetoxification and fermentation. The techno-economic evaluations suggest that the cost reduction of replacing cellulase enzyme with cheap acid catalysts compensated the partial ethanol loss of sugar conversion to inhibitors (21.5-89.1%). The re-examination of acid hydrolysis process reveals that a substantial breakthrough in highly active and selective acid catalyst is required for acid hydrolysis to compete with enzymic hydrolysis for cellulosic ethanol fermentation.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ya Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Beisi Road, Shihezi, Xinjiang 800032, China
| | - Jing Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Baorui Zhan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
8
|
Brar KK, Raheja Y, Chadha BS, Magdouli S, Brar SK, Yang YH, Bhatia SK, Koubaa A. A paradigm shift towards production of sustainable bioenergy and advanced products from Cannabis/hemp biomass in Canada. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-22. [PMID: 35342682 PMCID: PMC8934023 DOI: 10.1007/s13399-022-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 05/22/2023]
Abstract
The global cannabis (Cannabis sativa) market was 17.7 billion in 2019 and is expected to reach up to 40.6 billion by 2024. Canada is the 2nd nation to legalize cannabis with a massive sale of $246.9 million in the year 2021. Waste cannabis biomass is managed using disposal strategies (i.e., incineration, aerobic/anaerobic digestion, composting, and shredding) that are not good enough for long-term environmental sustainability. On the other hand, greenhouse gas emissions and the rising demand for petroleum-based fuels pose a severe threat to the environment and the circular economy. Cannabis biomass can be used as a feedstock to produce various biofuels and biochemicals. Various research groups have reported production of ethanol 9.2-20.2 g/L, hydrogen 13.5 mmol/L, lipids 53.3%, biogas 12%, and biochar 34.6% from cannabis biomass. This review summarizes its legal and market status (production and consumption), the recent advancements in the lignocellulosic biomass (LCB) pre-treatment (deep eutectic solvents (DES), and ionic liquids (ILs) known as "green solvents") followed by enzymatic hydrolysis using glycosyl hydrolases (GHs) for the efficient conversion efficiency of pre-treated biomass. Recent advances in the bioconversion of hemp into oleochemicals, their challenges, and future perspectives are outlined. A comprehensive insight is provided on the trends and developments of metabolic engineering strategies to improve product yield. The thermochemical processing of disposed-off hemp lignin into bio-oil, bio-char, synthesis gas, and phenol is also discussed. Despite some progress, barricades still need to be met to commercialize advanced biofuels and compete with traditional fuels.
Collapse
Affiliation(s)
- Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 India
| | | | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Ahmed Koubaa
- Institut de Recherche Sur Les Forêts, Université du Québec en Abitibi-Témiscamingue, Université, Rouyn-Noranda, 445 Boulevard de l’ Université, Rouyn-Noranda, QC J9X5E4 Canada
| |
Collapse
|
9
|
Polish Varieties of Industrial Hemp and Their Utilisation in the Efficient Production of Lignocellulosic Ethanol. Molecules 2021; 26:molecules26216467. [PMID: 34770876 PMCID: PMC8587792 DOI: 10.3390/molecules26216467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
Nowadays, more and more attention is paid to the development and the intensification of the use of renewable energy sources. Hemp might be an alternative plant for bioenergy production. In this paper, four varieties of Polish industrial hemp (Białobrzeskie, Tygra, Henola, and Rajan) were investigated in order to determine which of them are the most advantageous raw materials for the effective production of bioethanol. At the beginning, physical and chemical pretreatment of hemp biomass was carried out. It was found that the most effective is the alkaline treatment with 2% NaOH, and the biomasses of the two varieties were selected for next stages of research: Tygra and Rajan. Hemp biomass before and after pretreatment was analyzed by FTIR and SEM, which confirmed the effectiveness of the pretreatment. Next, an enzymatic hydrolysis process was carried out on the previously selected parameters using the response surface methodology. Subsequently, the two approaches were analyzed: separated hydrolysis and fermentation (SHF) and a simultaneous saccharification and fermentation (SSF) process. For Tygra biomass in the SHF process, the ethanol concentration was 10.5 g∙L−1 (3.04 m3·ha−1), and for Rajan biomass at the SSF process, the ethanol concentration was 7.5 g∙L−1 (2.23 m3·ha−1). In conclusion, the biomass of Polish varieties of hemp, i.e., Tygra and Rajan, was found to be an interesting and promising raw material for bioethanol production.
Collapse
|
10
|
Batog J, Bujnowicz K, Gieparda W, Wawro A, Rojewski S. Effective Utilisation of Halophyte Biomass from Saline Soils for Biorefinering Processes. Molecules 2021; 26:molecules26175393. [PMID: 34500826 PMCID: PMC8434430 DOI: 10.3390/molecules26175393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
The salinity of European soil is increasing every year, causing severe economic damage (estimated 1-3 million hectares in the enlarged EU). This study uses the biomass of halophytes-tall fescue (grass) and hemp of the Białobrzeskie variety from saline soils-for bioenergy, second generation biofuels and designing new materials-fillers for polymer composites. In the bioethanol obtaining process, in the first stage, the grass and hemp biomass were pretreated with 1.5% NaOH. Before and after the treatment, the chemical composition was determined and the FTIR spectra and SEM pictures were taken. Then, the process of simultaneous saccharification and fermentation (SSF) was carried out. The concentration of ethanol for both the grass and hemp biomass was approx. 7 g·L-1 (14 g·100 g-1 of raw material). In addition, trials of obtaining green composites with halophyte biomass using polymers (PP) and biopolymers (PLA) as a matrix were performed. The mechanical properties of the composites (tensile and flexural tests) were determined. It was found that the addition of a compatibilizer improved the adhesion at the interface of PP composites with a hemp filler. In conclusion, the grass and hemp biomass were found to be an interesting and promising source to be used for bioethanol and biocomposites production. The use of annually renewable plant biomass from saline soils for biorefinering processes opens up opportunities for the development of a new value chains and new approaches to sustainable agriculture.
Collapse
|
11
|
Recent Advancements in Biological Conversion of Industrial Hemp for Biofuel and Value-Added Products. FERMENTATION 2021. [DOI: 10.3390/fermentation7010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sustainable, economically feasible, and green resources for energy and chemical products have people’s attention due to global energy demand and environmental issues. Last several decades, diverse lignocellulosic biomass has been studied for the production of biofuels and biochemicals. Industrial hemp has great market potential with its versatile applications. With the increase of the hemp-related markets with hemp seed, hemp oil, and fiber, the importance of hemp biomass utilization has also been emphasized in recent studies. Biological conversions of industrial hemp into bioethanol and other biochemicals have been introduced to address the aforementioned energy and environmental challenges. Its high cellulose content and the increased production because of the demand for cannabidiol oil and hempseed products make it a promising future bioenergy and biochemical source. Effective valorization of the underutilized hemp biomass can also improve the cost-competitiveness of hemp products. This manuscript reviews recent biological conversion strategies for industrial hemp and its characteristics. Current understanding of the industrial hemp properties and applied conversion technologies are briefly summarized. In addition, challenges and future perspectives of the biological conversion with industrial hemp are discussed.
Collapse
|