1
|
Brindangnanam P, Sawant AR, Ashokkumar K, Sriraghavan K, P S, Prashanth K, Coumar MS. Unveiling the potential of a novel drug efflux pump inhibitor to combat multidrug resistance in ESKAPEE pathogens, with a focus on Acinetobacter baumannii. Microb Pathog 2025; 203:107513. [PMID: 40147556 DOI: 10.1016/j.micpath.2025.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli) is a group of nosocomial pathogens with alarming antibiotic resistance, representing a paramount public health menace. Their multidrug resistance (MDR) is often due to hyperactive drug efflux transporters (DETs) exporting antibiotics from bacterial cells. Fortunately, a breakthrough has been made by the synthetic molecule KSA5_1 (8,10-dimethyl-1,6,11-triazatetracene-5,12-dione). In vitro combination assays of KSA5_1 with antibiotics (colistin, ciprofloxacin, gentamicin) showed excellent reductions in minimum inhibitory concentrations (MICs), as much as 512-fold, against clinical MDR isolates such as Enterococcus faecium, Staphylococcus aureus and Acinetobacter baumannii. Surprisingly, KSA5_1 was more effective than the standard efflux pump inhibitor PAβN in inhibiting ciprofloxacin efflux from A. baumannii, primarily targeting the overexpressed AdeG gene, a key DET protein. Molecular docking and simulations indicated the improved binding of KSA5_1 to AdeG with a suggestion of tight DET inhibition. KSA5_1 also possessed good drug-like profiles. The improved physicochemical profile of the compound and the potential to increase the efficacy of antibiotics by inhibiting DETs offer KSA5_1 an exciting lead to combat antimicrobial resistance (AMR). The new approach promises to address the challenging issue of MDR among ESKAPEE pathogens and has the potential to restore the efficacy of existing antibiotics to combat the AMR crisis.
Collapse
Affiliation(s)
- Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India
| | - Ajit Ramesh Sawant
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India
| | - Krishnan Ashokkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu state, India
| | - Kamaraj Sriraghavan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu state, India
| | - Shashikala P
- Department of Clinical Microbiology, Pondicherry Institute of Medical Sciences (PIMS), Pondicherry, India
| | - K Prashanth
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India.
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India.
| |
Collapse
|
2
|
Ala C, Ramalingam S, Kondapalli Venkata Gowri CS, Sankaranarayanan M. A critique review of fetal hemoglobin modulators through targeting epigenetic regulators for the treatment of sickle cell disease. Life Sci 2025; 369:123536. [PMID: 40057227 DOI: 10.1016/j.lfs.2025.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
Sickle cell disease (SCD) is one of the most prevalent hereditary blood disorders characterized by aberrant hemoglobin synthesis that causes red blood cells (RBCs) to sickle and result in vaso-occlusion. The complex pathophysiological mechanisms that underlie SCD are explored in this study, including hemoglobin polymerization, the formation of fetal hemoglobin (HbF), and hemoglobin switching regulation. Notably, pharmaceutical approaches like hydroxyurea, l-glutamine, voxelotor, and crizanlizumab, in addition to therapeutic techniques like gene therapies like Casgevy and Lyfgenia, signify noteworthy advancements in the management of issues connected to SCD. Furthermore, the deciphering of the molecular mechanisms that dictate hemoglobin switching has revealed several potentially therapeutic targets, including key transcriptional repressors such as β-cell lymphoma/leukemia 11A (BCL11A), Zinc finger and BTB domain-containing 7A (ZBTB7A), Nuclear Factor IX (NFIX), and Nuclear Factor IA (NFIA), which play crucial roles in γ-globin silencing. Additionally, transcriptional activators such as Nuclear Factor Y (NF-Y), and Hypoxia-inducible factor 1α (HIF1α) have emerged as promising regulators that can disrupt repression and enhance HbF synthesis. Other epigenetic regulators, such as lysine-specific histone demethylase 1 (LSD1), euchromatic histone methyltransferases 1/2 (EHMT1/2), histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and protein arginine methyltransferases (PRMTs). It has been demonstrated that inhibiting these targets can prevent the silencing of the gene encoding for the formation of γ-chains and, in turn, increase the synthesis of HbF, providing a possible treatment option for SCD symptoms. These approaches could pave the way for innovative, mechanism-driven therapies that address the unmet medical needs of SCD patients.
Collapse
Affiliation(s)
- Chandu Ala
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India.
| | - Sivaprakash Ramalingam
- Department of Biological Sciences and Bioengineering, Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, India.
| | - Chandra Sekhar Kondapalli Venkata Gowri
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India.
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India.
| |
Collapse
|
3
|
Bellver‐Sanchis A, Ribalta‐Vilella M, Irisarri A, Gehlot P, Choudhary BS, Jana A, Vyas VK, Banerjee DR, Pallàs M, Guerrero A, Griñán‐Ferré C. G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials. Med Res Rev 2025; 45:985-1015. [PMID: 39763018 PMCID: PMC11976383 DOI: 10.1002/med.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 04/09/2025]
Abstract
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases. Hence, findings offer valuable insights into developing novel and promising therapeutic strategies targeting G9a/EHMT2 for managing these neurological conditions.
Collapse
Affiliation(s)
- Aina Bellver‐Sanchis
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Marta Ribalta‐Vilella
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Pinky Gehlot
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Bhanwar Singh Choudhary
- Department of PharmacyCentral University of RajasthanAjmerIndia
- Drug Discovery and Development Centre (H3D)University of Cape TownRondeboschSouth Africa
| | - Abhisek Jana
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Vivek Kumar Vyas
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Deb Ranjan Banerjee
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
4
|
He H, Li X, Su F, Jin H, Zhang J, Wang Y. Current and Emerging Approaches Targeting G9a for the Treatment of Various Diseases. J Med Chem 2025; 68:1068-1089. [PMID: 39740072 DOI: 10.1021/acs.jmedchem.4c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
G9a, a histone lysine methyltransferase, is instrumental in regulating gene expression through epigenetic modifications. Its overexpression is closely linked to the progression of various human diseases, including cancers. Therefore, targeting G9a enzyme is a promising strategy for treating various diseases. Although no G9a inhibitors have yet reached clinical trials, several small molecule inhibitors have demonstrated strong preclinical efficacy. For instance, the orally available inhibitor 16 (DS79932728) shows significant potential for treating sickle cell disease, while 34 (compound 15h) has shown promising treatment of rhabdomyosarcoma. This Perspective summarizes the protein structure and biological functions of G9a, along with its association with various diseases. We highlight the design strategies, structure-activity relationships, and biological activity assessments of G9a inhibitors. Additionally, we discuss the unique advantages of the mechanisms of novel G9a inhibitors, offering insights for the future development of more effective drugs targeting G9a.
Collapse
Affiliation(s)
- Hua He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoxue Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feijing Su
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Jin
- College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| |
Collapse
|
5
|
Brindangnanam P, Ashokkumar K, Kamaraj S, Coumar MS. Exploring imidazo[4,5- g]quinoline-4,9-dione derivatives as Acinetobacter baumannii efflux pump inhibitor: an in silico approach. J Biomol Struct Dyn 2025; 43:53-72. [PMID: 37937796 DOI: 10.1080/07391102.2023.2279287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Antimicrobial resistance (AMR) is fast becoming a medical crisis affecting the entire global population. World Health Organization (WHO) statistics show that globally 0.7 million people are dying yearly due to the emergence of AMR. By 2050, the expected number of lives lost will be 10 million per year. Acinetobacter baumannii is a dreadful nosocomial pathogen that has developed multidrug resistance (MDR) to several currently prescribed antibiotics worldwide. Overexpression of drug efflux transporters (DETs) is one of the mechanisms of multidrug resistance (MDR) in Acinetobacter baumannii. Therefore, blocking the DET can raise the efficacy of the existing antibiotics by increasing their residence time inside the bacteria. In silico screening of five synthetic compounds against three drug efflux pump from A. baumannii has identified KSA5, a novel imidazo[4,5-g]quinoline-4,9-dione derivative, to block the efflux of antibiotics. Molecular docking and simulation results showed that KSA5 could bind to adeB, adeG, and adeJ by consistently interacting with ligand-binding site residues. KSA5 has a higher binding free energy and a lower HOMO-LUMO energy gap than PAβN, suggesting a better ability to interact and inhibit DETs. Further analysis showed that KSA5 is a drug-like molecule with optimal physicochemical and ADME properties. Hence, KSA5 could be combined with antibiotics to overcome antimicrobial resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, India
| | - Krishnan Ashokkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Velllore, India
| | - Sriraghavan Kamaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Velllore, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, India
| |
Collapse
|
6
|
Hassanie H, Penteado AB, de Almeida LC, Calil RL, da Silva Emery F, Costa-Lotufo LV, Trossini GHG. SETDB1 as a cancer target: challenges and perspectives in drug design. RSC Med Chem 2024; 15:1424-1451. [PMID: 38799223 PMCID: PMC11113007 DOI: 10.1039/d3md00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.
Collapse
Affiliation(s)
- Haifa Hassanie
- School of Pharmaceutical Sciences, University of São Paulo Brazil
| | | | | | | | - Flávio da Silva Emery
- School of Pharmaceutical Sciences of the Ribeirão Preto, University of São Paulo Brazil
| | | | | |
Collapse
|
7
|
Jana A, Naga R, Saha S, Griñán-Ferré C, Banerjee DR. Integration of ligand and structure-based pharmacophore screening for the identification of novel natural leads against Euchromatic histone lysine methyltransferase 2 (EHMT2/G9a). J Biomol Struct Dyn 2024; 42:3535-3562. [PMID: 37216299 DOI: 10.1080/07391102.2023.2213346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Herein, we report a blended ligand and structure-based pharmacophore screening approach to identify new natural leads against the Protein Lysine Methyltransferase 2 (EHMT2/G9a). The EHMT2/G9a has been associated with Cancer, Alzheimer's, and aging and is considered an emerging drug target having no clinically passed inhibitor. Purposefully, we developed the ligand-based pharmacophore (Pharmacophore-L) based on the common features of known inhibitors and the structure-based pharmacophore (Pharmacophore-S) based on the interaction profile of available crystal structures. The Pharmacophore-L and Pharmacophore-S were subjected to multiple tiers of validations and utilized in combination for the screening of total 741543 compounds coming from multiple databases. Additional layers of stringency were applied in the screening process to test drug-likeness (using Lipinski's rule, Veber's rule, SMARTS and ADMET filtration), to rule out any toxicity (TOPKAT analysis). The interaction profiles, stabilities, and comparative analysis against the reference were carried out by flexible docking, MD simulation, and MM-GBSA analysis, which finally led to three leads as potential inhibitors of G9a.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhisek Jana
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, India
| | - Rahul Naga
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Sougata Saha
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|
8
|
Jana A, Naga R, Saha S, Banerjee DR. 3D QSAR pharmacophore based lead identification of G9a lysine methyltransferase towards epigenetic therapeutics. J Biomol Struct Dyn 2023; 41:8635-8653. [PMID: 36264111 DOI: 10.1080/07391102.2022.2135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
The G9a, Lysine Methyltransferase that methylates the histone 3 lysine 9 (H3K9) of the nucleosome, is an excellent epigenetic target having no clinically passed inhibitor currently owing to adverse in vivo ADMET toxicities. In this work, we have carried out detailed computational investigations to find novel and safer lead against the target using advanced 3 D QSAR pharmacophore screening of databases containing more than 400000 entrees of natural compounds. The screening was conducted at different levels at increasing stringencies by employing pharmacophore mapping, druglikenesses and interaction profiles of the selected to identify potential hit compounds. The potential hits were further screened by advanced flexible docking, ADME and toxicity analysis to eight hit compounds. Based on the comparative analysis of the hits with the reference inhibitor, we identified one lead inhibitor against the G9a, having better binding efficacy and a safer ADMET profile than the reference inhibitor. Finally, the results were further verified using robust molecular dynamics simulation and MM-GBSA binding energy calculation. The natural compounds are generally considered benign due to their long human uses and this is the first attempt of in silico screening of a large natural compound library against G9a to our best knowledge. Therefore, the finding of this study may add value towards the development of epigenetic therapeutics against the G9a.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhisek Jana
- Department of Chemistry, National Institute of technology Durgapur, Durgapur, India
| | - Rahul Naga
- Department of Biotechnology, National Institute of technology Durgapur, Durgapur, India
| | - Sougata Saha
- Department of Biotechnology, National Institute of technology Durgapur, Durgapur, India
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of technology Durgapur, Durgapur, India
| |
Collapse
|
9
|
EHMT2/G9a as an Epigenetic Target in Pediatric and Adult Brain Tumors. Int J Mol Sci 2021; 22:ijms222011292. [PMID: 34681949 PMCID: PMC8539543 DOI: 10.3390/ijms222011292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms, including post-translational modifications of DNA and histones that influence chromatin structure, regulate gene expression during normal development and are also involved in carcinogenesis and cancer progression. The histone methyltransferase G9a (euchromatic histone lysine methyltransferase 2, EHMT2), which mostly mediates mono- and dimethylation by histone H3 lysine 9 (H3K9), influences gene expression involved in embryonic development and tissue differentiation. Overexpression of G9a has been observed in several cancer types, and different classes of G9a inhibitors have been developed as potential anticancer agents. Here, we review the emerging evidence suggesting the involvement of changes in G9a activity in brain tumors, namely glioblastoma (GBM), the main type of primary malignant brain cancer in adults, and medulloblastoma (MB), the most common type of malignant brain cancer in children. We also discuss the role of G9a in neuroblastoma (NB) and the drug development of G9a inhibitors.
Collapse
|