1
|
Nadagouda MN, Varshney G, Varshney V, Hejase CA. Recent Advances in Technologies for Phosphate Removal and Recovery: A Review. ACS ENVIRONMENTAL AU 2024; 4:271-291. [PMID: 39582759 PMCID: PMC11583102 DOI: 10.1021/acsenvironau.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 11/26/2024]
Abstract
Phosphorus is a nonrenewable resource, yet an essential nutrient in crop fertilizers that helps meet growing agricultural and food demands. As a limiting nutrient for primary producers, an excess amount of phosphorus entering water sources through agricultural runoff can lead to eutrophication events downstream. Therefore, to address global issues associated with the depletion of phosphate rock reserves and minimize the eutrophication of water bodies, numerous studies have investigated the removal and recovery of phosphates in usable forms using various chemical, physical, and biological methods. This review provides a comprehensive and critical evaluation of the literature, focusing on the widely employed adsorption and chemical precipitation for phosphate recovery from various wastewaters. Several experimental performance parameters including temperature, pH, coexisting ions (e.g., NO3 -, HCO3 -, Cl-, SO4 2-), surface area, porosity, and calcination are highlighted for their importance in optimizing adsorption capacity and struvite crystallization/precipitation. Furthermore, the morphological and structural characterization of various selected adsorbents and precipitated struvite crystals is discussed.
Collapse
Affiliation(s)
- Mallikarjuna N. Nadagouda
- Center
for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Gaiven Varshney
- Center
for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, United States
- Department
of Engineering Physics, Nuclear Expertise
for Advanced Technology (NEAT) Center, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Vikas Varshney
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
Air Force Base, Ohio 45433, United States
| | - Charifa A. Hejase
- Department
of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
- Pegasus
Technical Services INC., Cincinnati, Ohio 45219, United States
| |
Collapse
|
2
|
Akhtar MS, Ali S, Zaman W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024; 29:4317. [PMID: 39339312 PMCID: PMC11433758 DOI: 10.3390/molecules29184317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The growing presence of diverse pollutants, including heavy metals, organic compounds, pharmaceuticals, and emerging contaminants, poses significant environmental and health risks. Traditional methods for pollutant removal often face limitations in efficiency, selectivity, and sustainability. This review provides a comprehensive analysis of recent advancements in innovative adsorbents designed to address these challenges. It explores a wide array of non-conventional adsorbent materials, such as nanocellulose, metal-organic frameworks (MOFs), graphene-based composites, and biochar, emphasizing their sources, structural characteristics, and unique adsorption mechanisms. The review discusses adsorption processes, including the basic principles, kinetics, isotherms, and the factors influencing adsorption efficiency. It highlights the superior performance of these materials in removing specific pollutants across various environmental settings. The practical applications of these adsorbents are further explored through case studies in industrial settings, pilot studies, and field trials, showcasing their real-world effectiveness. Additionally, the review critically examines the economic considerations, technical challenges, and environmental impacts associated with these adsorbents, offering a balanced perspective on their viability and sustainability. The conclusion emphasizes future research directions, focusing on the development of scalable production methods, enhanced material stability, and sustainable regeneration techniques. This comprehensive assessment underscores the transformative potential of innovative adsorbents in pollutant remediation and their critical role in advancing environmental protection.
Collapse
Affiliation(s)
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Yong X, Nagaraja T, Krishnamoorthy R, Guanes A, Das S, Martsinovich N. Theoretical and Experimental Studies of Molecular Interactions between Engineered Graphene and Phosphate Ions for Graphene-Based Phosphate Sensing. ACS APPLIED NANO MATERIALS 2024; 7:18386-18397. [PMID: 39206347 PMCID: PMC11348312 DOI: 10.1021/acsanm.3c04147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 09/04/2024]
Abstract
Fundamental understanding of the interactions of nanoscale materials with molecules of interest is essential for the development of electronic devices, such as sensors. In particular, structures and molecular interaction properties of engineered graphenes are still largely unexplored, despite these materials' great potential to be used as molecular sensors. As an example of end user application, the detection of phosphorus in the form of phosphate in a soil environment is important for soil fertility and plant growth. However, due to the lack of an affordable technology, it is currently hard to measure the amount of phosphate directly in the soil; therefore, suitable sensor technologies need to be developed for phosphate sensors. In this work, pristine graphene and several modified graphene materials (oxygenated graphene, graphene with vacancies, and curved graphene) were studied as candidates for phosphate sensor materials using density functional theory (DFT) calculations. Our calculations showed that both pristine graphene and functionalized graphene were able to adsorb phosphate species strongly. In addition, these graphene nanomaterials showed selectivity of adsorption of phosphate with respect to nitrate, with stronger adsorption energies for phosphate. Furthermore, our calculations showed significant changes in electrical conductivities of pristine graphene and functionalized graphenes after phosphate species adsorption, in particular, on graphene with oxygen (hydroxyl and epoxide) functional groups. Experimental measurements of electrical resistivity of graphene before and after adsorption of dihydrogen phosphate showed an increase in resistivity upon adsorption of phosphate, consistent with the theoretical predictions. Our results recommend graphene and functionalized graphene-based nanomaterials as good candidates for the development of phosphate sensors.
Collapse
Affiliation(s)
- Xue Yong
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Thiba Nagaraja
- Department
of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Rajavel Krishnamoorthy
- Department
of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ana Guanes
- Department
of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Suprem
R. Das
- Department
of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, Kansas 66506, United States
- Department
of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Natalia Martsinovich
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
4
|
Hassan MH, Andreescu S. Tuning the Fluorometric Sensing of Phosphate on UiO-66-NH 2(Zr, Ce, Hf) Metal Nodes. Inorg Chem 2023; 62:20970-20979. [PMID: 38096488 DOI: 10.1021/acs.inorgchem.3c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Metal-organic frameworks (MOFs) with intrinsic luminescent properties, modular structure, and tunable electronic properties, provide unique opportunities for designing target-specific molecular sensors by systematically choosing their constituent building blocks. We report a simple one-step MOF-based sensing platform for phosphate (P) detection that combines the luminescent properties of 2-aminoterephthalic acid (ATA) with the affinity of rationally selected nodes in UiO-66-NH2 to bind with P. This MOF possesses an electron-donating amine group that controls the light-harvesting characteristics of the linkers. Substituting Zr6 node with Ce6 or Hf6 results in a series of isostructural MOFs with distinct optical properties that are nonexistent in the unsubstituted MOF. We have utilized these MOFs to quantitatively measure P, using its ability to bind strongly to metal nodes inhibiting the LMCT process and altering the linker's photon emission. Using this system, detection limits of 4.5, 7.2 and 10.5 μM were obtained for the UiO-66-NH2(Ce), UiO-66-NH2, and UiO-66-NH2(Hf) respectively, adopting a straightforward single step procedure. These results demonstrate that the selection of metal nodes in a series of isostructural MOFs can be used to modulate their electronic properties and create sensing probes possessing the desired characteristics needed for the detection of environmental contaminants.
Collapse
Affiliation(s)
- Mohamed H Hassan
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
5
|
Pattappan D, Kapoor S, Islam SS, Lai YT. Layered Double Hydroxides for Regulating Phosphate in Water to Achieve Long-Term Nutritional Management. ACS OMEGA 2023; 8:24727-24749. [PMID: 37483187 PMCID: PMC10357453 DOI: 10.1021/acsomega.3c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023]
Abstract
Hunger and undernourishment are increasing global challenges as the world's population continuously grows. Consequently, boosting productivity must be implemented to reach the global population's food demand and avoid deforestation. The current promising agricultural practice without herbicides and pesticides is fertilizer management, particularly that of phosphorus fertilizers. Layered double hydroxides (LDHs) have recently emerged as favorable materials in phosphate removal, with practical application possibilities in nanofertilizers. This review discusses the fundamental aspects of phosphate removal/recycling mechanisms and highlights the current endeavors on the development of phosphate-selective sorbents using LDH-based materials. Specific emphasis is provided on the progress in designing LDHs as the slow release of phosphate fertilizers reveals their relevance in making agro-practices more ecologically sound. Relevant pioneering efforts have been briefly reviewed, along with a discussion of perspectives on the potential of LDHs as green nanomaterials to improve food productivity with low eco-impacts.
Collapse
Affiliation(s)
- Dhanaprabhu Pattappan
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan, ROC
| | - Sakshi Kapoor
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia (A Central University), New Delhi 110025, India
| | - Saikh Safiul Islam
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia (A Central University), New Delhi 110025, India
| | - Yi-Ting Lai
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan, ROC
- Center
for Plasma and Thin Film Technologies, Ming
Chi University of Technology, New Taipei City 24301, Taiwan, ROC
- Biochemical
Technology R&D Center, Ming Chi University
of Technology, New Taipei
City 24301, Taiwan, ROC
| |
Collapse
|
6
|
Oktor K, Yuzer NY, Hasirci G, Hilmioglu N. Optimization of Removal of Phosphate from Water by Adsorption Using Biopolymer Chitosan Beads. WATER, AIR, AND SOIL POLLUTION 2023; 234:271. [PMID: 37064075 PMCID: PMC10088684 DOI: 10.1007/s11270-023-06230-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/11/2023] [Indexed: 06/19/2023]
Abstract
The need for clean water is the most basic human right. Water scarcity will be one important environmental problem of all countries in the future. Phosphate is a harmful matter for public health and the environment. In this study, the removal of phosphate from water by chitosan, which is an environmentally friendly material, was investigated. Chitosan adsorbent spheres were prepared for phosphate separation from water by adsorption, which is a feasible method. The effects of phosphate concentration, adsorbent dosage, and operation time on the removal were investigated. The removal increased with acid concentration and adsorbent amount. The maximum adsorption capacity of chitosan beads is 87.26 mg/g. Adsorption behavior of the chitosan beads were examined by Langmuir and Freundlich isotherms and pseudo-first and second-order kinetic models. The adsorption process was optimized by the response surface method (RSM). Trial version of Design Expert® 12.0 was used in the study. It has been understood as a result of the RSM statistical analysis that higher phosphate removal values would be obtained by increasing the amount of adsorbent. ANOVA analysis showed that adsorbent dosage had the biggest effect on removal of phosphate using chitosan beads prepared for adsorption.
Collapse
Affiliation(s)
- Kadriye Oktor
- Department of Environmental Engineering, Kocaeli University, 41001 İzmit, Kocaeli Turkey
| | - Nazlı Yenihan Yuzer
- Department of Chemical Engineering, Kocaeli University, 41001 İzmit, Kocaeli Turkey
| | - Guler Hasirci
- Department of Chemical Engineering, Kocaeli University, 41001 İzmit, Kocaeli Turkey
| | - Nilufer Hilmioglu
- Department of Chemical Engineering, Kocaeli University, 41001 İzmit, Kocaeli Turkey
| |
Collapse
|
7
|
Albert Aryee A, Gao C, Han R, Qu L. Synthesis of a novel magnetic biomass-MOF composite for the efficient removal of phosphates: Adsorption mechanism and characterization study. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Usman MO, Aturagaba G, Ntale M, Nyakairu GW. A review of adsorption techniques for removal of phosphates from wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3113-3132. [PMID: 36579873 DOI: 10.2166/wst.2022.382] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phosphate is considered the main cause of eutrophication and has received considerable attention recently. Several methods have been used for removal of phosphates in water and these include biological treatment, membrane filtration processes, chemical precipitation, and adsorption. Adsorption technology is highly effective in the removal of phosphate from wastewater even at low phosphate concentrations. Nanomaterials/nanoparticles, carbon-based materials (activated carbon and biochar), and their composites have been widely employed for the adsorptive removal and recovery of phosphate from wastewater due to their exceptional properties such as high surface area and high phosphate adsorption properties. This article is a review of the recently reported literature in the field of nanotechnology and activated carbon for the adsorption of phosphate from wastewater. Highlights of the adsorption mechanisms, adsorption behaviour, experimental parameters, effects of co-existing ions, and adsorbent modifications are also discussed.
Collapse
Affiliation(s)
- Mariam Onize Usman
- College of Natural Sciences, School of Physical Sciences, Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda E-mail:
| | - Godwin Aturagaba
- College of Natural Sciences, School of Physical Sciences, Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda E-mail:
| | - Muhammad Ntale
- College of Natural Sciences, School of Physical Sciences, Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda E-mail:
| | - George William Nyakairu
- College of Natural Sciences, School of Physical Sciences, Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda E-mail:
| |
Collapse
|
9
|
Mackay SE, Malherbe F, Eldridge DS. Quaternary amine functionalized chitosan for enhanced adsorption of low concentration phosphate to remediate environmental eutrophication. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Tao L, Chen J, Zhao J, Dmytro S, Zhang Q, Zhong S. Graphene in situ composite metal phthalocyanines (TN-MPc@GN, M = Fe, Co, Ni) with improved performance as anode materials for lithium ion batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj01835g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In view of the disadvantage of the limited active site utilization due to the easy aggregation of phthalocyanine compounds, three kinds of graphene composite metal phthalocyanines (TN-MPc@GN, M = Fe, Co, Ni) were prepared using an in situ composite method, and their electrochemical properties were investigated as anode materials for lithium-ion batteries.
Collapse
Affiliation(s)
- Lihong Tao
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Jun Chen
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Jianjun Zhao
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Sydorov Dmytro
- Joint Department of Electrochemical Energy Systems, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 38A Vernadsky Ave, Kiev, 03142, Ukraine
| | - Qian Zhang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| | - Shengwen Zhong
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China
| |
Collapse
|