1
|
Korotetskiy IS, Shilov SV, Kuznetsova TV, Zubenko N, Ivanova L, Reva ON. Epigenetic background of lineage-specific gene expression landscapes of four Staphylococcus aureus hospital isolates. PLoS One 2025; 20:e0322006. [PMID: 40323905 PMCID: PMC12052166 DOI: 10.1371/journal.pone.0322006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/16/2025] [Indexed: 05/07/2025] Open
Abstract
Bacteria with similar genomes can exhibit different phenotypes due to alternative gene expression patterns. In this study, we analysed four antibiotic-resistant Staphylococcus aureus hospital isolates using transcriptomics, PacBio genome sequencing, and methylomics analyses. Transcriptomic data were obtained from cultures exposed to gentamicin, the iodine-alanine complex CC-196, and their combination. We observed strain-specific expression patterns of core and accessory genes that remained stable under antimicrobial stress - a phenomenon we term the Clonal Gene Expression Stability (CGES) that is the main discovery of the paper. An involvement of epigenetic mechanisms in stabilization of the CGES was hypothesized and statistically verified. Canonical methylation patterns controlled by type I restriction-modification systems accounted for ~ 10% of epigenetically modified adenine residues, whereas multiple non-canonically modified adenines were distributed sporadically due to imperfect DNA targeting by methyltransferases. Protein-coding sequences were characterized by a significantly lower frequency of modified nucleotides. Epigenetic modifications near transcription start codons showed a statistically significant negative association with gene expression levels. While the role of epigenetic modifications in gene regulation remains debatable, variations in non-canonical modification patterns may serve as markers of CGES.
Collapse
Affiliation(s)
- Ilya S. Korotetskiy
- Virology laboratory, JSC Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan
- LLC International Engineering and Technological University, Almaty, Kazakhstan
- LLP Research and Production Association Kazpharmacom, Almaty, Kazakhstan
| | - Sergey V. Shilov
- Virology laboratory, JSC Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan
| | - Tatyana V. Kuznetsova
- Virology laboratory, JSC Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan
| | - Natalya Zubenko
- Virology laboratory, JSC Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan
| | - Lyudmila Ivanova
- Virology laboratory, JSC Scientific Center for Anti-Infectious Drugs, Almaty, Kazakhstan
| | - Oleg N. Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Villalba de la Peña M, Kronholm I. Antimicrobial resistance in the wild: Insights from epigenetics. Evol Appl 2024; 17:e13707. [PMID: 38817397 PMCID: PMC11134192 DOI: 10.1111/eva.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Spreading of bacterial and fungal strains that are resistant to antimicrobials poses a serious threat to the well-being of humans, animals, and plants. Antimicrobial resistance has been mainly investigated in clinical settings. However, throughout their evolutionary history microorganisms in the wild have encountered antimicrobial substances, forcing them to evolve strategies to combat antimicrobial action. It is well known that many of these strategies are based on genetic mechanisms, but these do not fully explain important aspects of the antimicrobial response such as the rapid development of resistance, reversible phenotypes, and hetero-resistance. Consequently, attention has turned toward epigenetic pathways that may offer additional insights into antimicrobial mechanisms. The aim of this review is to explore the epigenetic mechanisms that confer antimicrobial resistance, focusing on those that might be relevant for resistance in the wild. First, we examine the presence of antimicrobials in natural settings. Then we describe the documented epigenetic mechanisms in bacteria and fungi associated with antimicrobial resistance and discuss innovative epigenetic editing techniques to establish causality in this context. Finally, we discuss the relevance of these epigenetic mechanisms on the evolutionary dynamics of antimicrobial resistance in the wild, emphasizing the critical role of priming in the adaptation process. We underscore the necessity of incorporating non-genetic mechanisms into our understanding of antimicrobial resistance evolution. These mechanisms offer invaluable insights into the dynamics of antimicrobial adaptation within natural ecosystems.
Collapse
Affiliation(s)
| | - Ilkka Kronholm
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
3
|
Wang X, Yu D, Chen L. Antimicrobial resistance and mechanisms of epigenetic regulation. Front Cell Infect Microbiol 2023; 13:1199646. [PMID: 37389209 PMCID: PMC10306973 DOI: 10.3389/fcimb.2023.1199646] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
The rampant use of antibiotics in animal husbandry, farming and clinical disease treatment has led to a significant issue with pathogen resistance worldwide over the past decades. The classical mechanisms of resistance typically investigate antimicrobial resistance resulting from natural resistance, mutation, gene transfer and other processes. However, the emergence and development of bacterial resistance cannot be fully explained from a genetic and biochemical standpoint. Evolution necessitates phenotypic variation, selection, and inheritance. There are indications that epigenetic modifications also play a role in antimicrobial resistance. This review will specifically focus on the effects of DNA modification, histone modification, rRNA methylation and the regulation of non-coding RNAs expression on antimicrobial resistance. In particular, we highlight critical work that how DNA methyltransferases and non-coding RNAs act as transcriptional regulators that allow bacteria to rapidly adapt to environmental changes and control their gene expressions to resist antibiotic stress. Additionally, it will delve into how Nucleolar-associated proteins in bacteria perform histone functions akin to eukaryotes. Epigenetics, a non-classical regulatory mechanism of bacterial resistance, may offer new avenues for antibiotic target selection and the development of novel antibiotics.
Collapse
Affiliation(s)
- Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Donghong Yu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Lu Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Nishimura M, Tanaka T, Murata S, Miyabe A, Ishige T, Kawasaki K, Yokoyama M, Hashimoto N, Yamagata K, Nagano H, Tojo-Nishimura S, Matsushita K. Extension of bacterial rDNA sequencing for simultaneous methylation detection and its application in microflora analysis. Sci Rep 2023; 13:5731. [PMID: 37029177 PMCID: PMC10082018 DOI: 10.1038/s41598-023-28706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/23/2023] [Indexed: 04/09/2023] Open
Abstract
Although polymerase chain reaction (PCR) amplification and sequencing of the bacterial 16S rDNA region has numerous scientific applications, it does not provide DNA methylation information. Herein, we propose a simple extension for bisulfite sequencing to investigate 5-methylcytosine residues in the bacterial 16S rDNA region from clinical isolates or flora. Multiple displacement amplification without DNA denaturation was used to preferentially pre-amplify single-stranded bacterial DNA after bisulfite conversion. Following the pre-amplification, the 16S rDNA region was analyzed using nested bisulfite PCR and sequencing, enabling the simultaneous identification of DNA methylation status and sequence data. We used this approach (termed sm16S rDNA PCR/sequencing) to identify novel methylation sites and a methyltransferase (M. MmnI) in Morganella morganii and different methylation motifs among Enterococcus faecalis strains from small volumes of clinical specimens. Further, our analysis suggested that M. MmnI may be correlated to erythromycin resistance. Thus, sm16S rDNA PCR/sequencing is a useful extension method for analyzing the DNA methylation of 16S rDNA regions in a microflora, providing additional information not provided by conventional PCR. Given the relationship between DNA methylation status and drug resistance in bacteria, we believe this technique can be effectively applied in clinical sample testing.
Collapse
Affiliation(s)
- Motoi Nishimura
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan.
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Syota Murata
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Akiko Miyabe
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Kenji Kawasaki
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Masataka Yokoyama
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Hashimoto
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Yamagata
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satomi Tojo-Nishimura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
5
|
Qi Q, Angermayr SA, Bollenbach T. Uncovering Key Metabolic Determinants of the Drug Interactions Between Trimethoprim and Erythromycin in Escherichia coli. Front Microbiol 2021; 12:760017. [PMID: 34745067 PMCID: PMC8564399 DOI: 10.3389/fmicb.2021.760017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding interactions between antibiotics used in combination is an important theme in microbiology. Using the interactions between the antifolate drug trimethoprim and the ribosome-targeting antibiotic erythromycin in Escherichia coli as a model, we applied a transcriptomic approach for dissecting interactions between two antibiotics with different modes of action. When trimethoprim and erythromycin were combined, the transcriptional response of genes from the sulfate reduction pathway deviated from the dominant effect of trimethoprim on the transcriptome. We successfully altered the drug interaction from additivity to suppression by increasing the sulfate level in the growth environment and identified sulfate reduction as an important metabolic determinant that shapes the interaction between the two drugs. Our work highlights the potential of using prioritization of gene expression patterns as a tool for identifying key metabolic determinants that shape drug-drug interactions. We further demonstrated that the sigma factor-binding protein gene crl shapes the interactions between the two antibiotics, which provides a rare example of how naturally occurring variations between strains of the same bacterial species can sometimes generate very different drug interactions.
Collapse
Affiliation(s)
- Qin Qi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | | | - Tobias Bollenbach
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- Center for Data and Simulation Science, University of Cologne, Cologne, Germany
| |
Collapse
|