1
|
Belardi I, De Francesco G, Alfeo V, Bravi E, Sileoni V, Marconi O, Marrocchi A. Advances in the valorization of brewing by-products. Food Chem 2025; 465:141882. [PMID: 39541688 DOI: 10.1016/j.foodchem.2024.141882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Beer is the most consumed alcoholic beverage worldwide, and its production involves the generation of a huge volume of by-products (i.e., spent grain, spent hop, and spent yeast). This review aims to highlight the main properties of these by-products as a valuable source of biomolecules (i.e., proteins, cellulose, hemicellulose, lignin, phenolic compounds, and lipids) and the biorefining methods used in the last decade for their valorization. The pros and cons of the technologies employed will be shown, highlighting which of them could be more ready for the transition to an industrial scale, and which applications (e.g., food and feed, bioenergy, biochemicals, and biomaterials) are the most feasible.
Collapse
Affiliation(s)
- Ilary Belardi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Giovanni De Francesco
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Vincenzo Alfeo
- Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy
| | - Elisabetta Bravi
- Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy
| | - Valeria Sileoni
- Universitas Mercatorum, Piazza Mattei, 10, 00186 Rome, Italy
| | - Ombretta Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy.
| | - Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Zeko-Pivač A, Bošnjaković A, Planinić M, Parlov Vuković J, Novak P, Jednačak T, Tišma M. Improvement of the Nutraceutical Profile of Brewer's Spent Grain after Treatment with Trametes versicolor. Microorganisms 2022; 10:2295. [PMID: 36422365 PMCID: PMC9693169 DOI: 10.3390/microorganisms10112295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/21/2023] Open
Abstract
Brewer's spent grain (BSG) is an important secondary raw material that provides a readily available natural source of nutraceuticals. It finds its largest application as animal feed and part of the human diet, while the future perspective predicts an application in the production of value-added products. In order to investigate a sustainable BSG treatment method, two BSG samples (BSG1 and BSG2) were evaluated as substrates for the production of hydrolytic (xylanase, β-glucosidase and cellulase) and lignolytic enzymes (laccase, manganese peroxidase and lignin peroxidase) by solid-state fermentation (SSF) with Trametes versicolor while improving BSG nutritional value. The biological treatment was successful for the production of all hydrolytic enzymes and laccase and manganese peroxidase, while it was unsuccessful for the production of lignin peroxidase. Because the two BSGs were chemically different, the Trametes versicolor enzymes were synthesized at different fermentation times and had different activities. Consequently, the chemical composition of the two BSG samples at the end of fermentation was also different. The biological treatment had a positive effect on the increase in protein content, ash content, polyphenolic compounds, and sugars in BSG1. In BSG2, there was a decrease in the content of reducing sugars. Cellulose, hemicellulose, and lignin were degraded in BSG1, whereas only cellulose was degraded in BSG2, and the content of hemicellulose and lignin increased. The fat content decreased in both samples. The safety-related correctness analysis showed that the biologically treated sample did not contain any harmful components and was therefore safe for use in nutritionally enriched animal feed.
Collapse
Affiliation(s)
- Anđela Zeko-Pivač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Anja Bošnjaković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | | | - Predrag Novak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Tomislav Jednačak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Marina Tišma
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| |
Collapse
|
3
|
Su Y, Wenzel M, Seifert M, Weigand JJ. Surface ion-imprinted brewer's spent grain with low template loading for selective uranyl ions adsorption from simulated wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129682. [PMID: 35939905 DOI: 10.1016/j.jhazmat.2022.129682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Efficient removal of uranyl ions from wastewater requires excellent selectivity of the adsorbents. Herein, we report a new strategy using a high monomer/template molar ratio of 500:1 to prepare surface ion-imprinted brewer's spent grain (IIP-BSG) for selective U(VI) removal using binary functional monomers (2-hydroxyethyl methacrylate and diethyl vinylphosphonate) with high site accessibility and easy template removal. IIP-BSG exhibits a maximum U(VI) adsorption capacity of 165.7 mg/g, a high selectivity toward U(VI) in the presence of an excess amount of Eu(III) (Eu/U molar ratio = 20), a good tolerance of salinity, and a high reusability. In addition, mechanism studies have revealed electrostatic interaction and a coordination of uranyl ions by carboxyl and phosphoryl groups, the predominant contribution of high-energy (specific) sites during selective adsorption, and internal mass transfer as the rate-controlling step of U(VI) adsorption. Furthermore, IIP-BSG shows great potentials to separate U(VI) from lanthanides in simulated nuclear wastewater (pH0 = 3.5) and selectively concentrate U(VI) from simulated mine water (pH0 = 7.1). This study proves that the ion-imprinting effect can be achieved using a very low template amount with reduced production cost and secondary pollution, which benefits large-scale promotion of the ion-imprinted materials for selective uranyl ions removal.
Collapse
Affiliation(s)
- Yi Su
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Markus Seifert
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
4
|
He Y, Dietrich AM, Jin Q, Lin T, Yu D, Huang H. Cellulose adsorbent produced from the processing waste of brewer’s spent grain for efficient removal of Mn and Pb from contaminated water. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Su Y, Wenzel M, Paasch S, Seifert M, Doert T, Brunner E, Weigand JJ. One-pot synthesis of brewer's spent grain-supported superabsorbent polymer for highly efficient uranium adsorption from wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113333. [PMID: 35483410 DOI: 10.1016/j.envres.2022.113333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
High-efficient and fast adsorption of uranium is important to reduce the hazards caused by the uranium contamination of water environment due to the increased human activities. Herein, brewer's spent grain (BSG)-supported superabsorbent polymers (SAP) with different cross-linking densities are prepared as cheap and eco-friendly adsorbents for the first time via one-pot swelling and graft polymerization. A 7 wt% NaOH solution is used to swell BSG before grafting and subsequently neutralize the acrylic acid to control the reaction rate without producing alkaline wastewater. Compared with the traditional methods, swelling improves the grafting density and the utilization of raw materials due to the increased disorder degree of the BSG fibers. This results in the grafting of abundant carboxyl and amide groups onto the BSG backbone, forming a strongly hydrophilic polymer network of the BSG-SAP. Compared with the reference polymers without BSG, BSG-SAP presents higher adsorption capacity and enhanced reusability. The highly cross-linked BSG-SAP (BSG-SAP-H) shows an outstanding adsorption capacity of U(VI) (1465 mg/g at pH0 = 4.6), a fast adsorption rate (81% of equilibrium adsorption capacity in 15 min), and a high selectivity in the presence of competing ions. Adsorption mechanism studies reveal the involvement of amide groups, a bidentate binding structure between UO22+ and the carboxyl groups, and a cation exchange between Na+ and UO22+. More importantly, the adsorption capacity of BSG-SAP-H reaches 254.4 mg/g in the fixed-bed column experiment at a low initial concentration (c0(U) = 30 mg/L) and keeps 80% of the adsorption capacity after four cycles, indicating a great potential for uranium removal from wastewater. This work shows a suitable approach to explore the untreated biomass to prepare SAP with enhanced adsorption performance via a general and low-cost strategy.
Collapse
Affiliation(s)
- Yi Su
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Silvia Paasch
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Markus Seifert
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Thomas Doert
- Chair of Inorganic Chemistry II, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|