1
|
Wang R, Huang Z, Wu Z, Li X, Jiang JH. Chemical Engineering of DNAzyme for Effective Biosensing and Gene Therapy. SMALL METHODS 2025:e2401514. [PMID: 39895229 DOI: 10.1002/smtd.202401514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/07/2025] [Indexed: 02/04/2025]
Abstract
RNA-cleaving DNAzymes are in vitro selected functional nucleic acids with inherent catalytic activities. Due to their unique properties, such as high specificity, substrate cleavage capability, and programmability, DNAzymes have emerged as powerful tools in the fields of analytical chemistry, chemical biology, and biomedicine. Nevertheless, the biological applications of DNAzymes are still impeded by several challenges, such as structural instability, compromised catalytic activity in biological environments and the lack of spatiotemporal control designs, which may result in false-positive signals, limited efficacy or non-specific activation associated with side effects. To address these challenges, various strategies have been explored to regulate DNAzyme activity through chemical modifications, enhancing their stability, selectivity, and functionality, thereby positioning them as ideal candidates for biological applications. In this review, a comprehensive overview of chemically modified DNAzymes is provided, discussing modification strategies and the effects of these modifications on DNAzymes. Specific examples of the use of chemically modified DNAzymes in biosensing and gene therapy are also presented and discussed. Finally, the current challenges in the field are addressed and offer perspectives on the potential direction for chemically modified DNAzymes.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhimei Huang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhenkun Wu
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xin Li
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, The Third Hospital of Changsha (the Affiliated Changsha Hospital of Hunan University), Hunan University, Changsha, 410015, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Liu R, Jiang D, Yun Y, Feng Z, Zheng F, Xiang Y, Fan H, Zhang J. Photoactivatable Engineering of CRISPR/Cas9-Inducible DNAzyme Probe for In Situ Imaging of Nuclear Zinc Ions. Angew Chem Int Ed Engl 2024; 63:e202315536. [PMID: 38253802 DOI: 10.1002/anie.202315536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
DNAzyme-based fluorescent probes for imaging metal ions in living cells have received much attention recently. However, employing in situ metal ions imaging within subcellular organelles, such as nucleus, remains a significant challenge. We developed a three-stranded DNAzyme probe (TSDP) that contained a 20-base-pair (20-bp) recognition site of a CRISPR/Cas9, which blocks the DNAzyme activity. When Cas9, with its specialized nuclear localization function, forms an active complex with sgRNA within the cell nucleus, it cleaves the TSDP at the recognition site, resulting in the in situ formation of catalytic DNAzyme structure. With this design, the CRISPR/Cas9-inducible imaging of nuclear Zn2+ is demonstrated in living cells. Moreover, the superiority of CRISPR-DNAzyme for spatiotemporal control imaging was demonstrated by integrating it with photoactivation strategy and Boolean logic gate for dynamic monitoring nuclear Zn2+ in both HeLa cells and mice. Collectively, this conceptual design expands the DNAzyme toolbox for visualizing nuclear metal ions and thus provides new analytical methods for nuclear metal-associated biology.
Collapse
Affiliation(s)
- Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Difei Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Yangfang Yun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zhe Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Fenfen Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu, 212003, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Huanhuan Fan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Larcher LM, Pitout IL, Keegan NP, Veedu RN, Fletcher S. DNAzymes: Expanding the Potential of Nucleic Acid Therapeutics. Nucleic Acid Ther 2023. [PMID: 37093127 DOI: 10.1089/nat.2022.0066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Nucleic acids drugs have been proven in the clinic as a powerful modality to treat inherited and acquired diseases. However, key challenges including drug stability, renal clearance, cellular uptake, and movement across biological barriers (foremost the blood-brain barrier) limit the translation and clinical efficacy of nucleic acid-based therapies, both systemically and in the central nervous system. In this study we provide an overview of an emerging class of nucleic acid therapeutic, called DNAzymes. In particular, we review the use of chemical modifications and carrier molecules for the stabilization and/or delivery of DNAzymes in cell and animal models. Although this review focuses on DNAzymes, the strategies described are broadly applicable to most nucleic acid technologies. This review should serve as a general guide for selecting chemical modifications to improve the therapeutic performance of DNAzymes.
Collapse
Affiliation(s)
- Leon M Larcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Ianthe L Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Niall P Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Discovery, PYC Therapeutics, Nedlands, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Discovery, PYC Therapeutics, Nedlands, Australia
| |
Collapse
|
4
|
Chen L, Liu Y, Guo W, Liu Z. Light responsive nucleic acid for biomedical application. EXPLORATION (BEIJING, CHINA) 2022; 2:20210099. [PMID: 37325506 PMCID: PMC10190984 DOI: 10.1002/exp.20210099] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acids are widely used in biomedical applications because of their programmability and biocompatibility. The light responsive nucleic acids have attracted wide attention due to their remote control and high spatiotemporal resolution. In this review, we summarized the latest developments in biomedicine of light responsive molecules. The molecules which confer light responsive properties to nucleic acids were summarized. The binding sites of molecules to nucleic acids, the induced structural changes, and functional regulation of nucleic acids were reviewed. Then, the biomedical applications of light responsive nucleic acids were listed, such as drug delivery, biosensing, optogenetics, gene editing, etc. Finally, the challenges were discussed and possible future directions of light-responsive nucleic acids were proposed.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional RadiologyGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
| | - Zhenbao Liu
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan ProvinceP. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan ProvinceP. R. China
| |
Collapse
|
5
|
Zhang Q, Liang Y, Xing H. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|