1
|
Othman JAS, Ilyas RA, Nordin AH, Ngadi N, Alkbir MFM. Recent advancements in bamboo nanocellulose-based bioadsorbents and their potential in wastewater applications: A review. Int J Biol Macromol 2024; 277:134451. [PMID: 39102907 DOI: 10.1016/j.ijbiomac.2024.134451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
The research interest in sustainable and eco-friendly materials based on natural sources has increased dramatically due to their recyclability, biodegradability, compatibility, and nontoxic behavior. Recently, nanocellulose-based green composites are under extensive exploration and have gained popularity among researchers owing to their lightweight, lost cost, low density, excellent mechanical and physical characteristics. This review provides a comprehensive overview of the recent advancements in the extraction, modification, and application of bamboo nanocellulose as a high-performance bioadsorbent. Bamboo, a rapidly renewable resource, offers an eco-friendly alternative to traditional materials due to its abundant availability and unique structural properties. Significantly, bamboo comprises a considerable amount of cellulose, approximately 40 % to 50%, rendering it a valuable source of cellulose fiber for the fabrication of cellulose nanocrystals. The review highlights different various modification techniques which enhance the adsorption capacities and selectivity of bamboo nanocellulose. Furthermore, the integration of bamboo nanocellulose into novel composite materials and its performance in removing contaminants such as heavy metals, dyes, and organic pollutants from wastewater are critically analyzed. Emphasis is placed on the mechanisms of adsorption, regeneration potential, and the economic and environmental benefits of using bamboo-based bioadsorbents. The findings underscore the potential of bamboo nanocellulose to play a pivotal role in developing sustainable wastewater treatment technologies, offering a promising pathway towards cleaner water and a greener future.
Collapse
Affiliation(s)
- Jameelah Alhad Salih Othman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia.
| | - M F M Alkbir
- Advanced Facilities Engineering Technology Research Cluster, Malaysian Institute of Industrial Technology (MITEC), University Kuala Lumpur, Malaysia; Plant Engineering Technology (PETech), UniKL Malaysian Institute of Industrial Technology (MITEC), Persiaran Sinaran Ilmu, Johor, Darul Takzim, Malaysia
| |
Collapse
|
2
|
Altıntıg E, Sarıcı B, Bozdag D, Over Ozcelik T, Karakaş M, Altundag H. Application of Optimization Response Surface for the Adsorption of Methylene Blue Dye onto Zinc-coated Activated Carbon. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:682. [PMID: 38954055 DOI: 10.1007/s10661-024-12766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/25/2024] [Indexed: 07/04/2024]
Abstract
The activated carbon was produced in the first phase of this investigation by chemically activating hazelnut shell waste with H3PO4. Composite materials were obtained by coating the activated carbon with zinc oxide, whose BET surface area was calculated as 1278 m2 g-1. ZnO-doped ZnO/AC composite was synthesized as an adsorbent for its possible application in the elimination of organic dyestuff MB, and its removal efficiency was investigated. Morphological properties of ZnO/AC were characterized using analytical methods such as XRD, SEM, and BET. The adsorption system and its parameters were investigated and modeled using the response surface method of batch adsorption experiments. The experimental design consisted of three levels of pH (3, 6.5, and 10), initial MB concentration (50, 100, and 150 mg L-1), dosage (0.1, 0.3, and 0.5 g 100 mL-1), and contact time (5, 50, and 95 min). The results from the RSM suggested that the MB removal efficiency was 98.7% under the optimum conditions of the experimental factors. The R2 value, which expresses the significance of the model, was determined as 99.05%. Adsorption studies showed that the equilibrium data fit well with the Langmuir isotherm model compared to Freundlich. The maximum adsorption capacity was calculated as 270.70 mg g-1.
Collapse
Affiliation(s)
- Esra Altıntıg
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, Turkey.
| | - Birsen Sarıcı
- Akçakoca School of Tourism and Hotel Management, Düzce University, Düzce, Turkey
| | - Dilay Bozdag
- Engineering Faculty, Industrial Engineering Department, Sakarya University, Sakarya, Turkey
- Faculty of Science, Sakarya University, Sakarya, Turkey
| | - Tijen Over Ozcelik
- Engineering Faculty, Industrial Engineering Department, Sakarya University, Sakarya, Turkey
| | | | | |
Collapse
|
3
|
Lobo WV, Loureiro Paes OADR, Pinheiro W, Soares ER, de Souza MP, Dos Santos Sousa A, Kumar V, Iglauer S, de Freitas FA. Application of chemically modified waste tucumã (Astrocaryum aculeatum) seeds in the biosorption of methylene blue: kinetic and thermodynamic parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34097-34111. [PMID: 38693458 DOI: 10.1007/s11356-024-33517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Dye effluents cause diverse environmental problems. Methylene blue (MB) dye stands out since it is widely used in the textile industry. To reduce the pollution caused by the MB, we developed biosorbents from tucumã seeds, where the in natura seeds were treated with NaOH (BT) and H3PO4 (AT) solutions and characterized by Boehm titration, point of zero charges, FTIR, TGA, BET, and SEM. It was observed that the acid groups predominate on the surface of the three biosorbents. The process was optimized for all biosorbents at pH = 8, 7.5 g/L, 240 min, C0 = 250 mg/L, and 45 ℃. BT was more efficient in removing MB (96.20%; QMax = 35.71 mg/g), while IT and AT removed around 60% in similar conditions. The adsorption process best fits Langmuir and Redlich-Peterson isotherms, indicating a hybrid adsorption process (monolayer and multilayer) and pseudo-second-order kinetics. Thermodynamic data confirmed an endothermic and spontaneous adsorption process, mainly for BT. MB was also recovered through a desorption process with ethanol, allowing the BT recycling and reapplication of the dye. Thus, an efficient and sustainable biosorbent was developed, contributing to reducing environmental impacts.
Collapse
Affiliation(s)
- Wyvirlany Valente Lobo
- Programa de Pós-Graduação Em Química, Universidade Federal Do Amazonas, Setor Norte, Manaus, AM, 69080-900, Brazil
| | | | - William Pinheiro
- Programa de Pós-Graduação Em Química, Universidade Federal Do Amazonas, Setor Norte, Manaus, AM, 69080-900, Brazil
| | - Elzalina Ribeiro Soares
- Centro de Estudos Superiores de Tefé, Universidade Do Estado Do Amazonas, Estrada Do Bexiga, 1085, Bairro Jerusalém, Tefé, AM, 69470-000, Brazil
| | - Mayane Pereira de Souza
- Centro de Biotecnologia da Amazônia, Av. Gov. Danilo de Matos Areosa, 690 - Distrito Industrial I, Manaus, AM, 69075-351, Brazil
| | - Airi Dos Santos Sousa
- Centro de Biotecnologia da Amazônia, Av. Gov. Danilo de Matos Areosa, 690 - Distrito Industrial I, Manaus, AM, 69075-351, Brazil
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Stefan Iglauer
- School of Engineering, Edith Cowan University, 270 Joondalup Dr., Joondalup, WA, 6027, Australia
| | - Flávio A de Freitas
- Programa de Pós-Graduação Em Química, Universidade Federal Do Amazonas, Setor Norte, Manaus, AM, 69080-900, Brazil.
- Centro de Biotecnologia da Amazônia, Av. Gov. Danilo de Matos Areosa, 690 - Distrito Industrial I, Manaus, AM, 69075-351, Brazil.
| |
Collapse
|
4
|
Chen J, Wu J, Zhong Y, Ma X, Lv W, Zhao H, Zhu J, Yan N. Multifunctional superhydrophilic/underwater superoleophobic lignin-based polyurethane foam for highly efficient oil-water separation and water purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Lignocellulosic materials as adsorbents in solid phase extraction for trace elements preconcentration. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Wang D, Tian J, Guan J, Ding Y, Wang ML, Tonnis B, Liu J, Huang Q. Valorization of sugarcane bagasse for sugar extraction and residue as an adsorbent for pollutant removal. Front Bioeng Biotechnol 2022; 10:893941. [PMID: 36091428 PMCID: PMC9449146 DOI: 10.3389/fbioe.2022.893941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
Following juice crushing for sugar or bioethanol production from sugarcane, bagasse (SCB) is generated as the main lignocellulosic by-product. This study utilized SCB generated by a hydraulic press as feedstock to evaluate sugar extraction as well as adsorption potential. Total soluble sugar (sucrose, glucose, and fructose) of 0.4 g/g SCB was recovered with H2O extraction in this case. Insoluble sugar, that is, cellulose in SCB, was further hydrolyzed into glucose (2%–31%) with cellulase enzyme, generating a new bagasse residue (SCBE). Persulfate pretreatment of SCB slightly enhanced saccharification. Both SCB and SCBE showed great potential as adsorbents with 98% of methylene blue (MB) removed by SCB or SCBE and 75% of Cu2+ by SCBE and 80% by SCB in 60 min. The maximum adsorption amount (qm) was 85.8 mg/g (MB by SCB), 77.5 mg/g (MB by SCBE), 3.4 mg/g (Cu2+ by SCB), and 1.2 mg/g (Cu2+ by SCBE). The thermodynamics indicated that the adsorption process is spontaneous, endothermic, and more random in nature. The experimental results offer an alternative to better reutilize SCB.
Collapse
Affiliation(s)
- Duanhao Wang
- College of Biology and Food Engineering, Huanghuai University, Zhumadian, China
| | - Jiahua Tian
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Jian Guan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Yiwen Ding
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Ming Li Wang
- USDA-ARS, Plant Genetic Resources Conservation Unit, Griffin, GA, United States
| | - Brandon Tonnis
- USDA-ARS, Plant Genetic Resources Conservation Unit, Griffin, GA, United States
| | - Jiayang Liu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Jiayang Liu, ; Qingguo Huang,
| | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
- *Correspondence: Jiayang Liu, ; Qingguo Huang,
| |
Collapse
|