1
|
Sivasuriyan KS, Namasivayam SKR, Pandian A. Molecular insights into the anti-cancer activity of chitosan-okra mucilage polymeric nanocomposite doped with nano zero-valent iron against multi-drug-resistant oral carcinoma cells. Int J Biol Macromol 2025; 286:138495. [PMID: 39644860 DOI: 10.1016/j.ijbiomac.2024.138495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Recent advances in nanotechnology, particularly those utilizing polymeric nanocomposites, have garnered significant attention for their effectiveness and biocompatibility in cancer diagnosis and treatment. In this study, a chitosan-okra mucilage polymeric nanocomposite doped with nano zero-valent iron (CS-OM-nZVI), synthesized using green chemistry principles, was evaluated for its anti-cancer activity against drug-resistant oral carcinoma cells (KBChR). The nanocomposite was created from chitosan, mucilage derived from okra biomass, and nano zerovalent iron particles synthesized through chemical reduction. The resulting nanocomposite exhibited a highly stable, crystalline nanoscale structure with excellent stability. Anti-cancer activity was assessed by measuring cell viability, apoptosis induction, oxidative stress markers, DNA fragmentation, and performing in silico docking studies between the components of the polymeric nanocomposite (CS-OM-nZVI) and key proteins involved in carcinoma pathogenesis. The nanocomposite demonstrated significant anticancer activity, with an IC50 of 600 μg/mL, indicating notable effects on cell viability. It also induced significant morphological changes associated with apoptosis, such as chromatin condensation and nuclear fragmentation. Additionally, the nanocomposite had a marked effect on oxidative stress markers, particularly catalase and superoxide dismutase activity. In silico docking studies revealed that the polymeric composite modulates and enhances both intrinsic and extrinsic apoptotic pathways, confirmed by chitosan's binding to Caspase-3. This study suggests that the prepared nanocomposite is a promising anti-cancer agent against drug-resistant oral carcinoma cells, demonstrating a significant impact on cancer cell viability.
Collapse
Affiliation(s)
- Krithika Shree Sivasuriyan
- Centre for Applied Research, Saveetha School of Engineering, Saveetha institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India.
| | - Arjun Pandian
- Centre for Applied Research, Saveetha School of Engineering, Saveetha institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India
| |
Collapse
|
2
|
Yalcin YS, Gichuki S, Chen H, Arumanayagam AS, Malwalage SM, Sitther V. Comparative lipidome and transcriptome provide novel insights into zero-valent iron nanoparticle-treated Fremyella diplosiphon. Sci Rep 2024; 14:29380. [PMID: 39592694 PMCID: PMC11599946 DOI: 10.1038/s41598-024-79780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Understanding the intricate interplay between nanoparticle-mediated cyanobacterial interactions is pivotal in elucidating their impact on the transcriptome and lipidome. In the present study, total fatty acid methyl esters (FAMEs) in the wild-type (B481-WT) and transformant (B481-SD) Fremyella diplosiphon strains treated with nanoscale zero-valent iron nanoparticles (nZVIs) were characterized, and transcriptome changes analyzed. Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry revealed a 20-25% higher percentage of FAMEs in nZVI-treated F. diplosiphon strain B481-SD compared to B481-WT. Accumulation of alkanes was significantly higher (> 1.4 times) in both strains treated with 25.6 mg L-1 nZVIs compared to the untreated control. In addition, we observed significantly higher levels of monounsaturated FAMEs (11%) in B481-WT in 3.2 (11.34%) and 25.6 mg L-1 (11.22%) nZVI-treated cells when compared to the untreated control (7%). Analysis of the F. diplosiphon transcriptome treated with 3.2 mg L-1 revealed a total of 1811 and 1651 genes that were differentially expressed in B481-SD and B481-WT respectively. While the expression of iron uptake and ion channel genes was downregulated, genes coding for photosynthesis, pigment, and antioxidant enzymes were significantly (p < 0.05) upregulated in B481-SD treated with 3.2 mg L-1 nZVIs compared to the untreated control. This study on essential FAMEs and regulation of genes in nZVI-treated F. diplosiphon strains provides a molecular framework for optimization of metabolic pathways in this model species.
Collapse
Affiliation(s)
- Yavuz S Yalcin
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Samson Gichuki
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Huan Chen
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University, 1800 East Paul Dirac Dr, Tallahassee, FL, 32310-4005, USA
| | | | | | - Viji Sitther
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA.
| |
Collapse
|
3
|
Yalcin YS, Aydin BN, Sitther V. Impact of Zero-Valent Iron Nanoparticles and Ampicillin on Adenosine Triphosphate and Lactate Metabolism in the Cyanobacterium Fremyella diplosiphon. Microorganisms 2024; 12:612. [PMID: 38543663 PMCID: PMC10975374 DOI: 10.3390/microorganisms12030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 04/01/2024] Open
Abstract
In cyanobacteria, the interplay of ATP and lactate dynamics underpins cellular energetics; their pronounced shifts in response to zero-valent iron (nZVI) nanoparticles and ampicillin highlight the nuanced metabolic adaptations to environmental challenges. In this study, we investigated the impact of nZVIs and ampicillin on Fremyella diplosiphon cellular energetics as determined by adenosine triphosphate (ATP) content, intracellular and extracellular lactate levels, and their impact on cell morphology as visualized by transmission electron microscopy. While a significant increase in ATP concentration was observed in 0.8 mg/L ampicillin-treated cells compared to the untreated control, a significant decline was noted in cells treated with 3.2 mg/L nZVIs. ATP levels in the combination regimen of 0.8 mg/L ampicillin and 3.2 mg/L nZVIs were significantly elevated (p < 0.05) compared to the 3.2 mg/L nZVI treatment. Intracellular and extracellular lactate levels were significantly higher in 0.8 mg/L ampicillin, 3.2 mg/L nZVIs, and the combination regimen compared to the untreated control; however, extracellular lactate levels were the highest in cells treated with 3.2 mg/L nZVIs. Visualization of morphological changes indicated increased thylakoid membrane stacks and inter-thylakoidal distances in 3.2 mg/L nZVI-treated cells. Our findings demonstrate a complex interplay of nanoparticle and antibiotic-induced responses, highlighting the differential impact of these stressors on F. diplosiphon metabolism and cellular integrity.
Collapse
Affiliation(s)
| | | | - Viji Sitther
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
4
|
D'ors A, Sánchez-Fortún A, Cortés-Téllez AA, Fajardo C, Mengs G, Nande M, Martín C, Costa G, Martín M, Bartolomé MC, Sánchez-Fortún S. Adverse effects of iron-based nanoparticles on freshwater phytoplankton Scenedesmus armatus and Microcystis aeruginosa strains. CHEMOSPHERE 2023; 339:139710. [PMID: 37532199 DOI: 10.1016/j.chemosphere.2023.139710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Zero-valent nano-iron particles (nZVI) are increasingly present in freshwater aquatic environments due to their numerous applications in environmental remediation. However, despite the broad benefits associated with the use and development of nZVI nanoparticles, the potential risks of introducing them into the aquatic environment need to be considered. Special attention should be focused on primary producer organisms, the basal trophic level, whose impact affects the rest of the food web. Although there are numerous acute studies on the acute effects of these nanoparticles on photosynthetic primary producers, few studies focus on long-term exposures. The present study aimed at assessing the effects of nZVI on growth rate, photosynthesis activity, and reactive oxygen activity (ROS) on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa. Moreover, microcystin production was also evaluated. These parameters were assessed on both organisms singly exposed to 72 h-effective nZVI concentration for 10% maximal response for 28 days. The results showed that the cell growth rate of S. armatus was initially significantly altered and progressively reached control-like values at 28 days post-exposure, while M. aeruginosa did not show any significant difference concerning control values at any time. In both strains dark respiration (R) increased, unlike net photosynthesis (Pn), while gross photosynthesis (Pg) only slightly increased at 7 days of exposure and then became equal to control values at 28 days of exposure. The nZVI nanoparticles generated ROS progressively during the 28 days of exposure in both strains, although their formation was significantly higher on green algae than on cyanobacteria. These data can provide additional information to further investigate the potential risks of nZVI and ultimately help decision-makers make better informed decisions regarding the use of nZVI for environmental remediation.
Collapse
Affiliation(s)
- A D'ors
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - A Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - A A Cortés-Téllez
- Environmental Toxicology Laboratory, Faculty of Chemistry-Pharmacobiology, Universidad Michoacana de San Nicolás de Hidalgo, 403 Santiago Tapia St, 58000, Morelia, (Michoacán), Mexico
| | - C Fajardo
- Dpt. of Biomedicine and Biotechnology, Universidad de Alcalá (UAH), w/n San Diego Sq, 28801, Alcalá de Henares, Spain
| | - G Mengs
- Technical and R&D Department, Ecotoxilab SL, 10 Juan XXIII, 28550, Tielmes, Spain
| | - M Nande
- Dpt. of Biochemistry and Molecular Biology, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - C Martín
- Dpt. of Biotechnology-Plant Biology, Universidad Politécnica de Madrid (UPM), 3 Complutense Ave, 28040, Madrid, Spain
| | - G Costa
- Department of Animal Physiology, Faculty of Veterinary Sciences, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - M Martín
- Dpt. of Biochemistry and Molecular Biology, Complutense University, w/n Puerta de Hierro Ave, 28040, Madrid, Spain
| | - M C Bartolomé
- Environmental Toxicology Laboratory, Faculty of Chemistry-Pharmacobiology, Universidad Michoacana de San Nicolás de Hidalgo, 403 Santiago Tapia St, 58000, Morelia, (Michoacán), Mexico.
| | - S Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Universidad Complutense de Madrid (UCM), w/n Puerta de Hierro Ave, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Yalcin YS, Aydin B, Chen H, Gichuki S, Sitther V. Lipid production and cellular changes in Fremyella diplosiphon exposed to nanoscale zerovalent iron nanoparticles and ampicillin. Microb Cell Fact 2023; 22:108. [PMID: 37280676 PMCID: PMC10245528 DOI: 10.1186/s12934-023-02113-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
With the dramatic decrease in fossil fuel stocks and their detrimental effects on the environment, renewable energy sources have gained imminent importance in the mitigation of emissions. As lipid-enriched energy stocks, cyanobacteria are the leading group of microorganisms contributing to the advent of a new energy era. In the present study, the impact of Nanofer 25 s nanoscale zero-valent iron nanoparticles (nZVIs) and ampicillin on lipid production and cellular structural changes in Fremyella diplosiphon strain B481-SD were investigated. Total lipid abundance, fatty acid methyl ester (FAME) compositions, and alkene production as detected by high-resolution two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC/TOF-MS) was significantly higher (p < 0.05) in the individual application of 0.8 mg/L ampicillin, 3.2 mg/L nZVIs, and a combined regimen of 0.8 mg/L ampicillin and 3.2 mg/L nZVIs compared to the untreated control. In addition, we identified significant increases (p < 0.05) in monounsaturated fatty acids (MUFAs) in F. diplosiphon treated with the combination regimen compared to the untreated control, 0.8 mg/L of ampicillin, and 3.2 mg/L of nZVIs. Furthermore, individual treatment with 0.8 mg/L ampicillin and the combination regimen (0.8 mg/L ampicillin + 3.2 mg/L nZVIs) significantly increased (p < 0.05) Nile red fluorescence compared to the untreated control, indicating neutral membrane lipids to be the main target of ampicillin added treatments. Transmission electron microscopy studies revealed the presence of single-layered thylakoid membranes in the untreated control, while complex stacked membranes of 5-8 layers were visualized in ampicillin and nZVI-treated F. diplosiphon. Our results indicate that nZVIs in combination with ampicillin significantly enhanced total lipids, essential FAMEs, and alkenes in F. diplosiphon. These findings offer a promising approach to augment the potential of using the strain as a large-scale biofuel agent.
Collapse
Affiliation(s)
- Yavuz S Yalcin
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Busra Aydin
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Huan Chen
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University, 1800 East Paul Dirac Dr, Tallahassee, FL, 32310-4005, USA
| | - Samson Gichuki
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Viji Sitther
- Department of Biology, Morgan State University, Baltimore, MD, 21251, USA.
| |
Collapse
|
6
|
Wyatt L, Gichuki S, Yalcin YS, Sitther V. Impact of Ascorbic Acid on Zero-Valent Iron Nanoparticle and UV-B Mediated Stress in the Cyanobacterium, Fremyella diplosiphon. Microorganisms 2023; 11:1245. [PMID: 37317219 DOI: 10.3390/microorganisms11051245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Fremyella diplosiphon is an ideal third-generation biofuel source due to its ability to produce transesterified lipids. While nanofer 25s zero-valent iron nanoparticles (nZVIs) improve lipid production, an imbalance between reactive oxygen species (ROS) and cellular defense can be catastrophic to the organism. In the present study, the effect of ascorbic acid on nZVI and UV-induced stress in F. diplosiphon strain B481-SD was investigated, and lipid profiles in the combination regimen of nZVIs and ascorbic acid compared. Comparison of F. diplosiphon growth in BG11 media amended with 2, 4, 6, 8, and 10 mM ascorbic acid indicated 6 mM to be optimal for the growth of B481-SD. Further, growth in 6 mM ascorbic acid combined with 3.2 mg/L nZVIs was significantly higher when compared to the combination regimen of 12.8 and 51.2 mg/L of nZVIs and 6 mM ascorbic acid. The reversal effect of UV-B radiation for 30 min and 1 h indicated that ascorbic acid restored B481-SD growth. Transesterified lipids characterized by gas chromatography-mass spectrometry indicated C16 hexadecanoate to be the most abundant fatty acid methyl ester in the combination regimen of 6 mM ascorbic acid and 12.8 mg/L nZVI-treated F. diplosiphon. These findings were supported by microscopic observations in which cellular degradation was observed in B481-SD cells treated with 6 mM ascorbic acid and 12.8 mg/L nZVIs. Our results indicate that ascorbic acid counteracts the damaging effect of oxidative stress produced by nZVIs.
Collapse
Affiliation(s)
- LaDonna Wyatt
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
| | - Samson Gichuki
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
| | - Yavuz S Yalcin
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
| | - Viji Sitther
- Department of Biology, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA
| |
Collapse
|
7
|
Yazdani Z, Biparva P, Rafiei A, Kardan M, Hadavi S. Combination effect of cold atmospheric plasma with green synthesized zero-valent iron nanoparticles in the treatment of melanoma cancer model. PLoS One 2022; 17:e0279120. [PMID: 36534669 PMCID: PMC9762585 DOI: 10.1371/journal.pone.0279120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Green synthesized zero-valent iron nanoparticles (nZVI) have high potential in cancer therapy. Cold atmospheric plasma (CAP) is also an emerging biomedical technique that has great potential to cure cancer. Therefore, the combined effect of CAP and nZVI might be promising in treatment of cancer. In this study, we evaluated the combined effect of CAP and nZVI on the metabolic activity of the surviving cells and induction of apoptosis in malignant melanoma in comparison with normal cells. Therefore, the effect of various time exposure of CAP radiation, different doses of nZVI, and the combined effect of CAP and nZVI were evaluated on the viability of malignant melanoma cells (B16-F10) and normal fibroblast cells (L929) at 24 h after treatment using MTT assay. Then, the effect of appropriate doses of each treatment on apoptosis was evaluated by fluorescence microscopy and flow cytometry with Annexin/PI staining. In addition, the expression of BAX, BCL2 and Caspase 3 (CASP3) was also assayed. The results showed although the combined effect of CAP and nZVI significantly showed cytotoxic effects and apoptotic activity on cancer cells, this treatment had no more effective compared to CAP or nZVI alone. In addition, evaluation of gene expression showed that combination therapy didn't improve expression of apoptotic genes in comparison with CAP or nZVI. In conclusion, combined treatment of CAP and nZVI does not seem to be able to improve the effect of monotherapy of CAP or nZVI. It may be due to the resistance of cancer cells to high ROS uptake or the accumulation of saturated ROS in cells, which prevents the intensification of apoptosis.
Collapse
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pourya Biparva
- Department of Basic Sciences, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Kardan
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedehniaz Hadavi
- Department of Atomic and Molecular Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
- Plasma Technology Research Center, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|