1
|
Lee DU, Kayumov M, Park J, Park SK, Kang Y, Ahn Y, Kim W, Yoo SH, Park JK, Kim BG, Oh YS, Jeong IS, Choi DY. Antibiofilm and antithrombotic hydrogel coating based on superhydrophilic zwitterionic carboxymethyl chitosan for blood-contacting devices. Bioact Mater 2024; 34:112-124. [PMID: 38204564 PMCID: PMC10777421 DOI: 10.1016/j.bioactmat.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Blood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting nature of antibacterial and antithrombotic activities, specifically regarding electrostatic interactions. This study introduced a novel biocompatible hydrogel of sodium alginate and zwitterionic carboxymethyl chitosan (ZW@CMC) with antibacterial and antithrombotic activities for use in catheters. The ZW@CMC hydrogel demonstrates a superhydrophilic surface and good hygroscopic properties, which facilitate the formation of a stable hydration layer with low friction. The zwitterionic-functionalized CMC incorporates an additional negative sulfone group and increased negative charge density in the carboxyl group. This augmentation enhances electrostatic repulsion and facilitates the formation of hydration layer. This leads to exceptional prevention of blood clotting factor adhesion and inhibition of biofilm formation. Subsequently, the ZW@CMC hydrogel exhibited biocompatibility with tests of in vitro cytotoxicity, hemolysis, and catheter friction. Furthermore, in vivo tests of antithrombotic and systemic inflammation models with catheterization indicated that ZW@CMC has significant advantages for practical applications in cardiovascular-related and sepsis treatment. This study opens a new avenue for the development of chitosan-based multifunctional hydrogel for applications in blood-contacting devices.
Collapse
Affiliation(s)
- Dong Uk Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Mukhammad Kayumov
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Junghun Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Se Kye Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Yeongkwon Kang
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yejin Ahn
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Woojin Kim
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Seung Hwa Yoo
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | | | - Bong-Gi Kim
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong Suk Oh
- Department of Mechanical Engineering, Changwon National University, Changwon, 51140, Republic of Korea
| | - In-Seok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| |
Collapse
|
2
|
Murillo-Gelvez J, Dmitrenko O, Torralba-Sanchez TL, Tratnyek PG, Di Toro DM. p Ka prediction of per- and polyfluoroalkyl acids in water using in silico gas phase stretching vibrational frequencies and infrared intensities. Phys Chem Chem Phys 2023; 25:24745-24760. [PMID: 37671434 DOI: 10.1039/d3cp01390a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
To successfully understand and model the environmental fate of per- and polyfluoroalkyl substances (PFAS), it is necessary to know key physicochemical properties (PChPs) such as pKa; however, measured PChPs of PFAS are scarce and of uncertain reliability. In this study, quantitative structure-activity relationships (QSARs) were developed by correlating calculated (M062-X/aug-cc-pVDZ) vibrational frequencies (VF) and corresponding infrared intensities (IRInt) to the pKa of carboxylic acids, sulfonic acids, phosphonic acids, sulfonamides, betaines, and alcohols. Antisymmetric stretching VF of the anionic species were used for all subclasses except for alcohols where the OH stretching VF performed better. The individual QSARs predicted the pKa for each subclass mostly within 0.5 pKa units from the experimental values. The inclusion of IRInt as a pKa predictor for carboxylic acids improved the results by decreasing the root-mean-square error from 0.35 to 0.25 (n > 100). Application of the developed QSARs to estimate the pKa of PFAS within each subclass revealed that the length of the perfluoroalkyl chain has minimal effect on the pKa, consistent with other models but in stark contrast with the limited experimental data available.
Collapse
Affiliation(s)
- Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
3
|
Potter M, Debnath S, Drover MW, Rondeau-Gagné S, Mutus B. An Azomethine-H-Based Fluorogenic Sensor for Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43880-43886. [PMID: 37671912 DOI: 10.1021/acsami.3c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Formic acid (FA) is an important C1-containing feedstock that serves as a masked source of dihydrogen gas (H2). To encourage the adoption of cleaner (noncarbonaceous) energy sources, FA detection and sensing is thus of considerable interest. Here, we examine the use of a commercially available dye, azomethine-H (Az-H), for FA sensing. Solution studies confirm that FA quenches both the absorbance and the luminescence properties of Az-H. FA was additionally found to attenuate a known Az-H (E)-to-(Z) conformational change, suggesting an Az-H/FA interaction, possibly through hydrogen bonding; this phenomenon was probed using 1H NMR spectroscopy. Moving toward a solid-state sensor, the Az-H probe was incorporated into a gelatin-based matrix. On exposure to FA, the luminescence of this system was found to increase in a FA-dependent manner, attributed to the formation of stable hydrogen-bonded structures, facilitating a (Z)-to-(E) isomerization via imine protonation, allowing for production of the more luminescent (E)-isomer. This fluorogenic signal was used as a FA sensor with an estimated detection limit of ca. 0.4 ppb FA vapor. This work constitutes an important step toward a highly sensitive FA sensor in both the solution and solid state, opening new space for the detection of organic acids in differing chemical environments.
Collapse
Affiliation(s)
- Mark Potter
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Suman Debnath
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Marcus W Drover
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Bulent Mutus
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
4
|
Sunda AP, Singh S, Yadav S, Singh RK. Atomistic Simulations of Hydrated Sulfonated Polybenzophenone Block Copolymer Membranes. Chemphyschem 2023; 24:e202300104. [PMID: 37260415 DOI: 10.1002/cphc.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/02/2023]
Abstract
We present a classical molecular dynamics simulations study on the nanostructures of the sulfonated polybenzophenone (SPK) block copolymer membranes at 300 K and 353 K. The results of the radial distribution function (RDF) show that the interactions of the sulfonate groups of the membrane with the hydronium ions are more significant than those of water due to the strong electrostatic attraction over the hydrogen bonding. However, the effect of temperatures on the RDF profile seems insignificant. Furthermore, the spatial distribution function (SDF) portrays that the sulfonate groups of the hydrophilic components are preferential binding sites for hydronium ions against the hydrophobic counterpart of the SPK membrane. The mobility of the H3 O+ ions at 300 K and 353 K is two (or three) times lower than that of Nafion/Aciplex. However, the diffusion coefficients for water molecules closely agree with Nafion/Aciplex. This study suggests that water clusters are more localized around the sulfonate groups in the SPK membranes. Thus, the molecular modeling study of SPK block copolymer membranes is warranted to design better-performing membrane electrolytes.
Collapse
Affiliation(s)
- Anurag Prakash Sunda
- Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, India
| | - Soni Singh
- Department of Chemistry, Jagdam College, Jai Prakash University, Chapra, 841301, Bihar, India
| | - Sonia Yadav
- Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, India
| | - Raman K Singh
- Department of Chemistry, Jagdam College, Jai Prakash University, Chapra, 841301, Bihar, India
| |
Collapse
|
5
|
Pandey AN, Taketsugu T, Singh RK. Theoretical investigation of copper clusters using the electron propagator theory. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|