1
|
Song L, Zhang D, Liu T, Jiang C, Li B, Li C, Shen L, Li Y, Wang F, Jiao Y, Yang J. Non-transgenic, PAMAM co-delivery DNA of interactive proteins NbCRVP and NbCalB endows Nicotiana benthamiana with a stronger antiviral effect to RNA viruses. J Nanobiotechnology 2024; 22:23. [PMID: 38191434 PMCID: PMC10773047 DOI: 10.1186/s12951-023-02252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Viral diseases continue to pose a major threat to the world's commercial crops. The in-depth exploration and efficient utilization of resistance proteins have become crucial strategies for their control. However, current delivery methods for introducing foreign DNA suffer from host range limitations, low transformation efficiencies, tissue damage, or unavoidable DNA integration into the host genome. The nanocarriers provides a convenient channel for the DNA delivery and functional utilization of disease-resistant proteins. RESULTS In this research, we identified a cysteine-rich venom protein (NbCRVP) in Nicotiana benthamiana for the first time. Virus-induced gene silencing and transient overexpression clarified that NbCRVP could inhibit the infection of tobacco mosaic virus, potato virus Y, and cucumber mosaic virus, making it a broad-spectrum antiviral protein. Yeast two-hybrid assay, co-immunoprecipitation, and bimolecular fluorescence complementation revealed that calcium-dependent lipid-binding (CaLB domain) family protein (NbCalB) interacted with NbCRVP to assist NbCRVP playing a stronger antiviral effect. Here, we demonstrated for the first time the efficient co-delivery of DNA expressing NbCRVP and NbCalB into plants using poly(amidoamine) (PAMAM) nanocarriers, achieving stronger broad-spectrum antiviral effects. CONCLUSIONS Our work presents a tool for species-independent transfer of two interacting protein DNA into plant cells in a specific ratio for enhanced antiviral effect without transgenic integration, which further demonstrated new strategies for nanocarrier-mediated DNA delivery of disease-resistant proteins.
Collapse
Affiliation(s)
- Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- College of Agriculture and Forestry Science and Technology, Weifang Vocational College, Weifang, 262737, China
| | - Daoshun Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianbo Liu
- Tobacco Research Institute of Hunan Province, Hunan, 410004, China
| | - Changqing Jiang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Bin Li
- Sichuan Tobacco Company, Chengdu, 610000, China
| | - Changquan Li
- Liupanshui City Company of Guizhou Tobacco Company, Liupanshui, 553000, Guizhou, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Yubing Jiao
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
2
|
Komarova T, Ilina I, Taliansky M, Ershova N. Nanoplatforms for the Delivery of Nucleic Acids into Plant Cells. Int J Mol Sci 2023; 24:16665. [PMID: 38068987 PMCID: PMC10706211 DOI: 10.3390/ijms242316665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanocarriers are widely used for efficient delivery of different cargo into mammalian cells; however, delivery into plant cells remains a challenging issue due to physical and mechanical barriers such as the cuticle and cell wall. Here, we discuss recent progress on biodegradable and biosafe nanomaterials that were demonstrated to be applicable to the delivery of nucleic acids into plant cells. This review covers studies the object of which is the plant cell and the cargo for the nanocarrier is either DNA or RNA. The following nanoplatforms that could be potentially used for nucleic acid foliar delivery via spraying are discussed: mesoporous silica nanoparticles, layered double hydroxides (nanoclay), carbon-based materials (carbon dots and single-walled nanotubes), chitosan and, finally, cell-penetrating peptides (CPPs). Hybrid nanomaterials, for example, chitosan- or CPP-functionalized carbon nanotubes, are taken into account. The selected nanocarriers are analyzed according to the following aspects: biosafety, adjustability for the particular cargo and task (e.g., organelle targeting), penetration efficiency and ability to protect nucleic acid from environmental and cellular factors (pH, UV, nucleases, etc.) and to mediate the gradual and timely release of cargo. In addition, we discuss the method of application, experimental system and approaches that are used to assess the efficiency of the tested formulation in the overviewed studies. This review presents recent progress in developing the most promising nanoparticle-based materials that are applicable to both laboratory experiments and field applications.
Collapse
Affiliation(s)
- Tatiana Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
| | - Natalia Ershova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
3
|
Zhang Y, Wang J, Xiao Y, Jiang C, Cheng L, Guo S, Luo C, Wang Y, Jia H. Proteomics analysis of a tobacco variety resistant to brown spot disease and functional characterization of NbMLP423 in Nicotiana benthamiana. Mol Biol Rep 2023; 50:4395-4409. [PMID: 36971909 DOI: 10.1007/s11033-023-08330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/09/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Tobacco brown spot disease is an important disease caused by Alternaria alternata that affects tobacco production and quality worldwide. Planting resistant varieties is the most economical and effective way to control this disease. However, the lack of understanding of the mechanism of tobacco resistance to tobacco brown spot has hindered progress in the breeding of resistant varieties. METHODS AND RESULTS In this study, differentially expressed proteins (DEPs), including 12 up-regulated and 11 down-regulated proteins, were screened using isobaric tags for relative and absolute quantification (iTRAQ) by comparing resistant and susceptible pools and analyzing the associated functions and metabolic pathways. Significantly up-regulated expression of the major latex-like protein gene 423 (MLP 423) was detected in both the resistant parent and the population pool. Bioinformatics analysis showed that the NbMLP423 cloned in Nicotiana benthamiana had a similar structure to the NtMLP423 in Nicotiana tabacum, and that expression of both genes respond rapidly to Alternaria alternata infection. NbMLP423 was then used to study the subcellular localization and expression in different tissues, followed by both silencing and the construction of an overexpression system for NbMLP423. The silenced plants demonstrated inhibited TBS resistance, while the overexpressed plants exhibited significantly enhanced resistance. Exogenous applications of plant hormones, such as salicylic acid, had a significant inducing effect on NbMLP423 expression. CONCLUSIONS Taken together, our results provide insights into the role of NbMLP423 in plants against tobacco brown spot infection and provide a foundation for obtaining resistant tobacco varieties through the construction of new candidate genes of the MLP subfamily.
Collapse
Affiliation(s)
- Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Jie Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Yong Xiao
- Sichuan Tobacco Company, Chengdu, 610000, People's Republic of China
| | - Caihong Jiang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Lirui Cheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Shiping Guo
- Sichuan Tobacco Company, Chengdu, 610000, People's Republic of China
| | - Chenggang Luo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| | - Yuanying Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| | - Haijiang Jia
- Raw Material Technology Center of Guangxi Tobacco, Nanning, 530000, China.
| |
Collapse
|