1
|
Bera S, Thantirige R, Kadam SA, Sumant AV, Pradhan NR. High-Density Capacitive Energy Storage in Low-Dielectric-Constant Polymer PMMA/2D Mica Nanofillers Heterostructure Composite. Molecules 2024; 29:4671. [PMID: 39407600 PMCID: PMC11477880 DOI: 10.3390/molecules29194671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The ubiquitous, rising demand for energy storage devices with ultra-high storage capacity and efficiency has drawn tremendous research interest in developing energy storage devices. Dielectric polymers are one of the most suitable materials used to fabricate electrostatic capacitive energy storage devices with thin-film geometry with high power density. In this work, we studied the dielectric properties, electric polarization, and energy density of PMMA/2D Mica nanocomposite capacitors where stratified 2D nanofillers are interfaced between the multiple layers of PMMA thin films using two heterostructure designs of the capacitors, PMMA/2D Mica/PMMA (PMP) and PMMA/2D Mica/PMMA/2D Mica/PMMA (PMPMP). The incorporation of a 2D Mica nanofiller in the low-dielectric-constant PMMA leads to an enhancement in the dielectric constant, with ∆ε ~ 15% and 53% for PMP and PMPMP heterostructures at room temperature. Additionally, a significant improvement in discharged energy density was measured for the PMPMP capacitor (Ud ~ 38 J/cm3 at 825 MV/m) compared to the pristine PMMA (Ud ~ 9.5 J/cm3 at 522 MV/m) and PMP capacitors (Ud ~ 19 J/cm3 at 740 MV/m). This excellent capacitive and energy storage performance of the PMMA/2D Mica heterostructure nanocomposite may inform the fabrication of thin-film, high-density energy storage capacitor devices for potential applications in various platforms.
Collapse
Affiliation(s)
- Sumit Bera
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, 1400 John R. Lynch Street, Jackson, MS 39217, USA
| | - Rukshan Thantirige
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, 1400 John R. Lynch Street, Jackson, MS 39217, USA
| | - Sujit A. Kadam
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, 1400 John R. Lynch Street, Jackson, MS 39217, USA
| | - Anirudha V. Sumant
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Nihar R. Pradhan
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, 1400 John R. Lynch Street, Jackson, MS 39217, USA
| |
Collapse
|
2
|
Zheng S, Zhao X, Xie J, Sun S. Crosslinking modification and hydrogen bonding synergy to achieve high breakdown strength and energy density of PMMA- co-GMA/PVDF dielectric composite films. Phys Chem Chem Phys 2023; 25:32482-32492. [PMID: 37994561 DOI: 10.1039/d3cp04317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Polymer-based dielectric materials have been used in film capacitors due to their rapid charge-discharge rate, lightness, and low cost. Nevertheless, the energy storage properties of these dielectric films were limited by their weak polarization ability and low discharge energy density. Herein, the solution casting method was used to prepare all-organic crosslinked composite films using linear methyl methacrylate-co-glycidyl methacrylate (MG) as the matrix and ferroelectric poly(vinylidene fluoride) (PVDF) as the organic filler. The crosslinked MG networks can enhance the breakdown strength, restrain dielectric loss, and keep high discharge efficiency. What's more, the presence of PVDF can compensate for the low electrical displacement, improve the permittivity, and overcome the brittleness of the crosslinked films. The optimal all-organic crosslinked dielectric film exhibited an ultrahigh breakdown strength of 800 MV m-1 and a high efficiency of 77.4%. The maximum energy density of the composite film reached up to 12.1 J cm-3, which was nearly 120% higher than the energy density of 5.6 J cm-3 of the pure MG film. The enhancement in energy storage properties is ascribed to the synergistic effects of chemical crosslinking and hydrogen bonding. This study offers a feasible method for all-organic polymer films to fabricate energy storage equipment.
Collapse
Affiliation(s)
- Shuo Zheng
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Xuanchen Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Junhao Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
3
|
You L, Liu B, Hua H, Jiang H, Yin C, Wen F. Energy Storage Performance of Polymer-Based Dielectric Composites with Two-Dimensional Fillers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2842. [PMID: 37947688 PMCID: PMC10650859 DOI: 10.3390/nano13212842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Dielectric capacitors have garnered significant attention in recent decades for their wide range of uses in contemporary electronic and electrical power systems. The integration of a high breakdown field polymer matrix with various types of fillers in dielectric polymer nanocomposites has attracted significant attention from both academic and commercial sectors. The energy storage performance is influenced by various essential factors, such as the choice of the polymer matrix, the filler type, the filler morphologies, the interfacial engineering, and the composite structure. However, their application is limited by their large amount of filler content, low energy densities, and low-temperature tolerance. Very recently, the utilization of two-dimensional (2D) materials has become prevalent across several disciplines due to their exceptional thermal, electrical, and mechanical characteristics. Compared with zero-dimensional (0D) and one-dimensional (1D) fillers, two-dimensional fillers are more effective in enhancing the dielectric and energy storage properties of polymer-based composites. The present review provides a comprehensive overview of 2D filler-based composites, encompassing a wide range of materials such as ceramics, metal oxides, carbon compounds, MXenes, clays, boron nitride, and others. In a general sense, the incorporation of 2D fillers into polymer nanocomposite dielectrics can result in a significant enhancement in the energy storage capability, even at low filler concentrations. The current challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Liwen You
- Faculty of Mathematical and Physical Sciences, University College London, London WC1E 6BT, UK
| | - Benjamin Liu
- Environmental and Chemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Hongyang Hua
- Talent Program from China Association for Science and Technology and the Ministry of Education, Beijing Science Center, Beijing 100190, China
| | - Hailong Jiang
- Department of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
| | - Chuan Yin
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Fei Wen
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
4
|
Zheng S, Xie J, Zhao X, Sun S. Methyl Methacrylate-co-glycidyl Methacrylate-Based Dielectric Films with High Breakdown Strength and Discharge Energy Density Tailored by PVDF. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3710-3719. [PMID: 36869872 DOI: 10.1021/acs.langmuir.2c03427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Linear dielectric polymers are potential candidates for electrostatic capacitors due to their high breakdown strength, high efficiency, and low dielectric loss. In this work, a novel poly (vinylidene fluoride) (PVDF) tailored linear PMMA-co-GMA (MG) copolymer-based all-organic dielectric film with high breakdown strength and discharge energy density was prepared by the solution blending method. Compared with the PMMA homopolymer, the MG copolymer behaved with a higher energy density (5.6 J/cm3) since the GMA component bestowed higher polarity and yielded deep traps for the copolymer. On the other hand, the introduction of PVDF into MG further improved the dielectric constant and overcame the brittleness of MG films. When the concentration of PVDF was 30 wt %, the MG/PVDF film exhibited a high discharged energy density of 10.8 J/cm3 at 600 MV/m with a 78.7% discharge efficiency, which was 2.5 times that of pure PVDF (4.3 J/cm3 at 320 MV/m) and 1.9 times that of pure MG (5.6 J/cm3 at 460 MV/m). The improvement in energy storage performance might be ascribed to the excellent thermodynamic miscibility and hydrogen bond interaction between the linear MG copolymer and the ferroelectric PVDF. This research provides a new and feasible strategy for designing all-organic dielectric films with high energy density for energy storage applications.
Collapse
Affiliation(s)
- Shuo Zheng
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Junhao Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Xuanchen Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
5
|
Huang S, Liu K, Zhang W, Xie B, Dou Z, Yan Z, Tan H, Samart C, Kongparakul S, Takesue N, Zhang H. All-Organic Polymer Dielectric Materials for Advanced Dielectric Capacitors: Theory, Property, Modified Design and Future Prospects. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2129680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Shuaikang Huang
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kai Liu
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wu Zhang
- Inner Mongolia Metal Material Research Institute, Baotou, China
| | - Bing Xie
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, PR China
| | - Zhanming Dou
- China Zhenhua Group Yunke Electmnics Co., Ltd, Guiyang, China
| | - Zilin Yan
- School of Science, Harbin Institute of Technology, Shenzhen, PR China
| | - Hua Tan
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Faculty of Science, Fukuoka University, Fukuoka, Japan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Chanatip Samart
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, Thailand
| | - Suwadee Kongparakul
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, Thailand
| | | | - Haibo Zhang
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, Thailand
- Guangdong HUST Industrial Technology Research Institute, Dongguan, PR China
- Wenzhou Advanced Manufacturing Technology Research Institute of Huazhong University of Science and Technology, Wenzhou, PR China
| |
Collapse
|