1
|
Sun M, Qiu X, Yuan Z, Xu C, Chen Z. New advances in Traditional Chinese Medicine interventions for epilepsy: where are we and what do we know? Chin Med 2025; 20:37. [PMID: 40098198 PMCID: PMC11917061 DOI: 10.1186/s13020-025-01088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Epilepsy, one of the most common neurological diseases, affects more than 70 million people worldwide. Anti-seizure drugs targeting membrane ion channels or GABAergic neurotransmission are the first choices for controlling seizures, whereas the high incidence of pharmacoresistance and adverse effects largely restrict the availability of current anti-seizure drugs (ASDs). Traditional Chinese Medicine (TCM) has shown historical evidence-based therapeutic effects for neurological diseases including epilepsy. But until the late 1990s, great efforts in both clinical and experimental fields advanced TCM interventions for epilepsy from evidence-based practices to more systematic neuropharmacological significance, and show new lights on preferable management of epilepsy in the last decade. This review summarized the advances of applying TCM interventions (ranging from herbal medicines and their active ingredients to other strategies such as acupuncture) for epilepsy, followed by associated mechanism theories. The therapeutic potential of TCM interventions for epilepsy as well as its comorbidities turns from somehow debatable to hopeful. Finally, some prospects and directions were proposed to drive further clinical translational research. The future directions of TCM should aim at not only deriving specific anti-epileptic molecules but also illustrating more precise mechanisms with the assistance of advanced multifaceted experimental tools.
Collapse
Affiliation(s)
- Minjuan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhijian Yuan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Chen L, Li J, Fang C, Wang J. Metabolomics-Based Study on the Anticonvulsant Mechanism of Acorus tatarinowii: GABA Transaminase Inhibition Alleviates PTZ-Induced Epilepsy in Rats. Metabolites 2025; 15:175. [PMID: 40137140 PMCID: PMC11944195 DOI: 10.3390/metabo15030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Epilepsy is a common chronic and recurrent neurological disorder that poses a threat to human health, and Acorus tatarinowii Schott (ATS), a traditional Chinese medicine, is used to treat it. This study aimed to determine its effects on plasma metabolites. Moreover, the possible mechanism of its intervention in epilepsy was preliminarily explored, combined with network pharmacology. METHODS An epileptic model of rats was established using pentylenetetrazol. The potential targets and pathways of ATS were predicted by network pharmacology. Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometrynce Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometryance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry and statistical analyses were used to profile plasma metabolites and identify ATS's effects on epilepsy. RESULTS Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that ATS was involved in regulating multiple signaling pathways, mainly including the neuroactive ligand-receptor interaction and GABAerGamma-aminobutyrate transaminaseAminobutyrate Transaminaseapse signaling pathway. ATS treatment restored 19 metabolites in epiGamma-aminobutyrate transaminaseminobutyrate Transaminase rats, affecting lysine, histidine, and purine metabolism. GABA-T was found as a new key target for treating epilepsy with ATS. The IC50 of ATS for inhibiting GABA-T activity was 57.9 μg/mL. Through metabolomic analysis, we detected changes in the levels of certain metabolites related to the GABAergic system. These metabolite changes can be correlated with the targets and pathways predicted by network pharmacology. One of the limitations of this study is that the correlation analysis between altered metabolites and seizure severity remains unfinished, which restricts a more in-depth exploration of the underlying biological mechanisms. In the future, our research will focus on conducting a more in-depth exploration of the correlation analysis between altered metabolites and seizure severity. CONCLUSIONS These results improved our understanding of epilepsy and ATS treatment, potentially leading to better therapies. The identification of key metabolites and their associated pathways in this study offers potential novel therapeutic targets for epilepsy. By modulating these metabolites, future therapies could be designed to better manage the disorder. Moreover, the insights from network pharmacology can guide the development of more effective antiepileptic drugs, paving the way for improved clinical outcomes for patients.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (L.C.); (J.L.); (C.F.)
| | - Jiaxin Li
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (L.C.); (J.L.); (C.F.)
| | - Chengwei Fang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (L.C.); (J.L.); (C.F.)
| | - Jiepeng Wang
- School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
3
|
Chen X, Yu W, Zhao Y, Ji Y, Qi Z, Guan Y, Wan J, Hao Y. Diagnosis of epilepsy by machine learning of high-performance plasma metabolic fingerprinting. Talanta 2024; 277:126328. [PMID: 38824860 DOI: 10.1016/j.talanta.2024.126328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Epilepsy is a chronic neurological disorder that causes a major threat to public health and the burden of disease worldwide. High-performance diagnostic tools for epilepsy need to be developed to improve diagnostic accuracy and efficiency while still missing. Herein, we utilized nanoparticle-enhanced laser desorption/ionization mass spectrometry (NELDI MS) to acquire plasma metabolic fingerprints (PMFs) from epileptic and healthy individuals for timely and accurate screening of epilepsy. The NELDI MS enabled high detection speed (∼30 s per sample), high throughput (up to 384 samples per run), and favorable reproducibility (coefficients of variation <15 %), acquiring high-performed PMFs. We next constructed an epilepsy diagnostic model by machine learning of PMFs, achieving desirable diagnostic capability with the area under the curve (AUC) value of 0.941 for the validation set. Furthermore, four metabolites were identified as a diagnostic biomarker panel for epilepsy, with an AUC value of 0.812-0.860. Our approach provides a high-performed and high-throughput platform for epileptic diagnostics, promoting the development of metabolic diagnostic tools in precision medicine.
Collapse
Affiliation(s)
- Xiaonan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Wendi Yu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yinbing Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Yuxi Ji
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Ziheng Qi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Yangtai Guan
- Department of Neurology, Punan Branch of Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, PR China.
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China.
| | - Yong Hao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
4
|
Alwaili MA, Elhoby AH, El-Sayed NM, Mahmoud IZ, Alharthi A, El-Nablaway M, Khodeer DM. Cardioprotective Effects of α-Asarone Against Hexavalent Chromium-Induced Oxidative Damage in Mice. Drug Des Devel Ther 2024; 18:3383-3397. [PMID: 39100222 PMCID: PMC11297565 DOI: 10.2147/dddt.s464334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction This comprehensive study investigated the therapeutic potential of α-asarone in mitigating myocardial oxidative damage, primarily induced by hexavalent chromium (Cr(VI)) exposure in mice. Methods In this experiment, 24 mice were divided into four groups to assess the cardioprotective role of α-asarone. The study focused on two treatment groups, receiving 25 mg and 50 mg of α-asarone, respectively. These groups were compared against a control group subjected to Cr(VI) without α-asarone treatment, and a normal control negative group. The key biochemical parameters evaluated included serum levels of Creatine Kinase-MB (CK-MB) and Troponin I, markers indicative of myocardial damage. Additionally, the levels of Malondialdehyde (MDA) were measured to assess lipid peroxidation, alongside the evaluation of key inflammatory biomarkers in cardiac tissue homogenates, such as Tumor Necrosis Factor-α (TNF-α) and Interleukin-1β (IL-1β). Results Remarkably, α-asarone treatment resulted in a significant reduction in these markers compared to the control group. The treatment also elevated the activity of cardinal antioxidant enzymes like catalase (CAT) and superoxide dismutase (SOD), and reduced the glutathione (GSH). Furthermore, a notable upregulation of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) in cardiac tissue homogenates was observed, highlighting a potential pathway through which α-asarone exerts its protective effects. Histopathological analysis of cardiac tissues revealed that α-asarone ameliorated the structural lesions induced by Cr(VI). The study thus provides substantial evidence that α-asarone ameliorates Cr(VI)-induced cardiotoxicity through a multifaceted approach. It enhances cardiac enzyme function, modulates free radical generation, improves antioxidant status, and mitigates histopathological damage in cardiac tissues. Given these findings, α-asarone emerges as a promising agent against Cr(VI)-induced myocardial injury. Purpose This study paves the way for further research into the cardioprotective properties of α-asarone and its potential application in clinical settings by specifically exploring the protective efficacy of α-asarone against Cr(VI)-induced cardiotoxicity and delineating the underlying biochemical and molecular mechanisms involved.
Collapse
Affiliation(s)
- Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdallah H Elhoby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Islam Z Mahmoud
- Department of Cardiovascular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Riyadh, 13713, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Liu J, Ping X, Sun SJ, Yang J, Lu Y, Pei L. Safety assessment of Acori Tatarinowii Rhizoma: acute and subacute oral toxicity. Front Pharmacol 2024; 15:1377876. [PMID: 38567357 PMCID: PMC10985157 DOI: 10.3389/fphar.2024.1377876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction: Acori Tatarinowii Rhizoma (ATR) is a well-known traditional Chinese medicine that is used for treating neuropathic diseases. However, there is little information about the safety of ATR. Methods: The present study evaluated the acute and subacute oral toxicity of a water extract of ATR in Institute of Cancer Research (ICR) mice. In acute trials, a single administration of extract at a dose 5,000 mg/kg body weight led to no clinical signs of toxicity or mortality, indicating that the lethal dose (LD50) exceeded 5,000 mg/kg. A subacute toxicity test was done using daily doses of 1,250, 2,500, and 5,000 mg/kg of the ATR extract for 28 days, which did not show any adverse clinical symptoms or mortality. However, the male renal organ index and urea level in mice given 5,000 mg/kg was obviously abnormal, which was consistent with pathological results and suggested that this dose might cause kidney injury. Results: Doses of ATR lower than 2,500 mg/kg could be regarded as safe, although the potential cumulative effects of long-term use of high doses of ATR need to be considered. Discussion: The study highlights the function of ATR in reducing blood lipids and provides a new idea for its widespread clinical use in the future.
Collapse
Affiliation(s)
- Jia Liu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Central Laboratory, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, China
- Turbidity and Toxicity Laboratory, Hebei Key Laboratory of Turbidity, Shijiazhuang, China
| | - Xin Ping
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Central Laboratory, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, China
- Turbidity and Toxicity Laboratory, Hebei Key Laboratory of Turbidity, Shijiazhuang, China
| | - Shu-jie Sun
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jiali Yang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ye Lu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Central Laboratory, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, China
- Turbidity and Toxicity Laboratory, Hebei Key Laboratory of Turbidity, Shijiazhuang, China
| | - Lin Pei
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Central Laboratory, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, China
- Turbidity and Toxicity Laboratory, Hebei Key Laboratory of Turbidity, Shijiazhuang, China
| |
Collapse
|
6
|
He X, Chen X, Yang Y, Xie Y, Liu Y. Medicinal plants for epileptic seizures: Phytoconstituents, pharmacology and mechanisms revisited. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117386. [PMID: 37956914 DOI: 10.1016/j.jep.2023.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is a neurological disorder that presents with recurring and spontaneous seizures. It is prevalent worldwide, affecting up to 65 million people, with 80% of cases found in lower-income countries. Medicinal plants are commonly employed for managing and treating epilepsy and convulsions due to their unique therapeutic properties. With increasing research and clinical application, medicinal plants are gaining attention globally due to their potent therapeutic effects and fewer side effects. The development of new plant-based antiepileptic/anticonvulsant agents has become a major focus in the pharmaceutical industry. AIM OF THE REVIEW This article summarizes recent research on medicinal plants with reported antiepileptic/anticonvulsant effects. It provides pharmacological and molecular mechanism of action information for the crude extracts and related active constituents evaluated in preclinical research for the treatment of epilepsy and convulsions, and offers a reference for the development of future related studies in this area. MATERIALS AND METHODS Articles related to ethnopharmacological and antiepileptic studies on plants or natural products from 2018 to 2023 were collected from PubMed, Web of Science and Scopus, etc. using keywords related to epilepsy, medicinal plants, and natural products, etc. RESULTS: Eighty plant species are commonly used to treat epilepsy and convulsions in African and Asian countries. Sixty natural products showing potential for antiepileptic/anticonvulsant effects have been identified from these medicinal plants. These products can be broadly classified as alkaloids, coumarins, flavonoids, saponins, terpenoids and other compounds. The antiepileptic action of plant extracts and their active ingredients can be classified according to their abilities to modulate the GABAergic and glutamatergic systems, act as antioxidants, exhibit anti-neuroinflammatory effects, and provide neuroprotection. In addition, we highlight that some medicinal plants capable of pharmacologically relieving epilepsy and cognition may be therapeutically useful in the treatment of refractory epilepsy. CONCLUSIONS The review highlights the fact that herbal medicinal products used in traditional medicine are a valuable source of potential candidates for antiepileptic drugs. This confirms and encourages the antiepileptic/anticonvulsant activity of certain medicinal plants, which could serve as inspiration for further development. However, the aspects of structural modification and optimization, metabolism, toxicology, mechanisms, and clinical trials are not fully understood and need to be further explored.
Collapse
Affiliation(s)
- Xirui He
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China.
| | - Xufei Chen
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, 710065, Shaanxi, Xi'an, China
| | - Yan Yang
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China
| | - Yulu Xie
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China
| | - Yujie Liu
- Shool of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China
| |
Collapse
|
7
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Sumadewi KT, Harkitasari S, Tjandra DC. Biomolecular mechanisms of epileptic seizures and epilepsy: a review. ACTA EPILEPTOLOGICA 2023; 5:28. [PMID: 40217521 PMCID: PMC11960269 DOI: 10.1186/s42494-023-00137-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 04/14/2025] Open
Abstract
Epilepsy is a recurring neurological disease caused by the abnormal electrical activity in the brain. This disease has caused about 50 new cases in 100,000 populations every year with the clinical manifestations of awareness loss, bruising, and mobility abnormalities. Due to the lack understanding of the pathophysiology behind the illness, a wide variety of medications are available to treat epilepsy. Epileptogenesis is the process by which a normally functioning brain undergoes alterations leading to the development of epilepsy, involving various factors. This is related to the inflammation which is driven by cytokines like IL-1 and tumor necrosis factor-α (TNF-α) leads to neuronal hyperexcitability. Pro-inflammatory cytokines from activated microglia and astrocytes in epileptic tissue initiate an inflammatory cascade, heightening neuronal excitability and triggering epileptiform activity. The blood-brain barrier (BBB) maintains central nervous system integrity through its tight endothelial connections, but inflammation impact BBB structure and function which leads to immune cell infiltration. The mammalian target of rapamycin (mTOR) pathway's excessive activation influences epileptogenesis, impacting neuronal excitability, and synapse formation, with genetic mutations contributing to epilepsy syndromes and the modulation of autophagy playing a role in seizure onset. The apoptotic pathway contribute to cell death through glutamate receptor-mediated excitotoxicity, involving pro-apoptotic proteins like p53 and mitochondrial dysfunction, leading to the activation of caspases and the disruption of calcium homeostasis. Ionic imbalances within neural networks contribute to the complexity of epileptic seizures, involving alterations in voltage-gated sodium and potassium channels, and the formation of diverse ion channel subtypes. Epileptogenesis triggers molecular changes in hippocampus, including altered neurogenesis and enhanced expression of neurotrophic factors and proteins. Oxidative stress leads to cellular damage, disrupted antioxidant systems, and mitochondrial dysfunction, making it a key player in epileptogenesis and potential neuroprotective interventions. Thalamocortical circuitry disruption is central to absence epilepsy, the normal circuit becomes faulty and results in characteristic brain wave patterns.
Collapse
Affiliation(s)
- Komang Trisna Sumadewi
- Anatomy-Histology Department, Faculty of Medicine and Health Science, Warmadewa University, Denpasar, 80235, Indonesia.
| | - Saktivi Harkitasari
- Neurology Department, Faculty of Medicine and Health Science, Warmadewa University, Denpasar, 80235, Indonesia
| | - David Christopher Tjandra
- Bachelor of Medicine Study Program, Faculty of Medicine, Udayana University, Denpasar, 80234, Indonesia
| |
Collapse
|
9
|
Zhao Y, Li J, Cao G, Zhao D, Li G, Zhang H, Yan M. Ethnic, Botanic, Phytochemistry and Pharmacology of the Acorus L. Genus: A Review. Molecules 2023; 28:7117. [PMID: 37894595 PMCID: PMC10609487 DOI: 10.3390/molecules28207117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The genus Acorus, a perennial monocotyledonous-class herb and part of the Acoraceae family, is widely distributed in the temperate and subtropical zones of the Northern and Southern Hemispheres. Acorus is rich in biological activities and can be used to treat various diseases of the nervous system, cardiovascular system, and digestive system, including Alzheimer's disease, depression, epilepsy, hyperlipidemia, and indigestion. Recently, it has been widely used to improve eutrophic water and control heavy-metal-polluted water. Thus far, only three species of Acorus have been reported in terms of chemical components and pharmacological activities. Previously published reviews have not further distinguished or comprehensively expounded the chemical components and pharmacological activities of Acorus plants. By carrying out a literature search, we collected documents closely related to Acorus published from 1956 to 2022. We then performed a comprehensive and systematic review of the genus Acorus from different perspectives, including botanical aspects, ethnic applications, phytochemistry aspects, and pharmacological aspects. Our aim was to provide a basis for further research and the development of new concepts.
Collapse
Affiliation(s)
- Yu Zhao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia Li
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guoshi Cao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guangzhe Li
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hongyin Zhang
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingming Yan
- Northeast Asia Research Institute, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.Z.); (J.L.); (G.C.); (D.Z.); (G.L.)
- Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
10
|
Wang M, Tang HP, Wang S, Hu WJ, Li JY, Yu AQ, Bai QX, Yang BY, Kuang HX. Acorus tatarinowii Schott: A Review of Its Botany, Traditional Uses, Phytochemistry, and Pharmacology. Molecules 2023; 28:molecules28114525. [PMID: 37299001 DOI: 10.3390/molecules28114525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Acorus tatarinowii Schott (A. tatarinowii) is a natural medicinal plant. It plays an indispensable role in the treatment of diseases by the empirical medicine system and has achieved remarkable curative effects. A. tatarinowii is often used to treat various diseases, such as depression, epilepsy, fever, dizziness, heartache, stomachache, etc. More than 160 compounds of different structural types have been identified in A. tatarinowii, including phenylpropanoids, terpenoids, lignans, flavonoids, alkaloids, amides, and organic acids. These bioactive ingredients make A. tatarinowii remarkable for its pharmacological effects, including antidepressant, antiepileptic, anticonvulsant, antianxiety, neuroprotective, antifatigue, and antifungal effects, improving Alzheimer's disease, and so on. It is noteworthy that A. tatarinowii has been widely used in the treatment of brain diseases and nervous system diseases and has achieved satisfactory therapeutic effects. This review focused on the research publications of A. tatarinowii and aimed to summarize the advances in the botany, traditional uses, phytochemistry, and pharmacology, which will provide a reference for further studies and applications of A. tatarinowii.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jia-Yan Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
11
|
He X, Chen X, Yang Y, Liu Y, Xie Y. Acorus calamus var. angustatus Besser: Insight into current research on ethnopharmacological use, phytochemistry, pharmacology, toxicology, and pharmacokinetics. PHYTOCHEMISTRY 2023; 210:113626. [PMID: 36871902 DOI: 10.1016/j.phytochem.2023.113626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 05/09/2023]
Abstract
A. calamus var. angustatus Besser is an important traditional medicinal herb commonly used in China and other Asian countries. This study is the first systematic review of the literature to thoroughly analyze the ethnopharmacological application, phytochemistry, pharmacology, toxicology and pharmacokinetic properties of A. calamus var. angustatus Besser and provides a rationale for future research and prospects for application in clinical treatment. Information on relevant studies investigating A. calamus var. angustatus Besser was collected from SciFinder, the Web of Science, PubMed, CNKI, Elsevier, ResearchGate, ACS, Flora of China, and Baidu Scholar, etc. up to December 2022. In addition, information was also obtained from Pharmacopeias, books on Chinese herbal classics, local books, as well as PhD and MS dissertations. A. calamus var. angustatus Besser has played an important role in the herbal treatment of coma, convulsion, amnesia, and dementia for thousands of years. Studies investigating the chemical constituents of A. calamus var. angustatus Besser have isolated and identified 234 small-molecule compounds and a few polysaccharides. Among them, simple phenylpropanoids represented by asarone analogues and lignans are the two main active ingredients, which can be considered characteristic chemotaxonomic markers of this herb. In vitro and in vivo pharmacological studies indicated that crude extracts and active compounds from A. calamus var. angustatus Besser display a wide range of pharmacological activities, especially as treatment for Alzheimer's disease (AD), and anticonvulsant, antidepressant-like, anxiolytic-like, anti-fatigue, anti-Parkinson, neuroprotection, and brain protection properties, providing more evidence to explain the traditional medicinal uses and ethnopharmacology. The clinical therapeutic dose of A. calamus var. angustatus Besser does not present any toxic effects, but its main active ingredients α-asarone and β-asarone at excessive dose may lead to toxicity, and in particular, their respective epoxide metabolites may exert potential toxicity to the liver. This review provides a reference and further information for the future development and clinical application of A. calamus var. angustatus Besser.
Collapse
Affiliation(s)
- Xirui He
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China.
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
| | - Yan Yang
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yujie Liu
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yulu Xie
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
12
|
The Neuroprotective Effect Associated with Echinops spinosus in an Acute Seizure Model Induced by Pentylenetetrazole. Neurochem Res 2023; 48:273-283. [PMID: 36074199 DOI: 10.1007/s11064-022-03738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Echinops spinosus (ES) is a medicinal plant with a wide range of pharmacological and biological effects. It is a medicinal herb having a variety of therapeutic characteristics, including antioxidant, anti-inflammatory, and antibacterial capabilities. The primary goal of this research is to investigate the neuroprotective and anticonvulsant characteristics of E. spinosa extract (ESE) against pentylenetetrazole (PTZ)-induced acute seizures. Negative control rats, ESE treatment rats, PTZ acute seizure model rats, ESE + PTZ rats, and Diazepam + PTZ rats were used in the study. The rats were given a 7-day treatment. ESE pretreatment elevated the latency to seizure onset and lowered seizure duration after PTZ injection. By reducing Bax levels and enhancing antiapoptotic Bcl-2 production, ESE prevented the release of interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2, as well as preventing hippocampal cell death after PTZ injection. ESE corrected the PTZ-induced imbalance in gamma-aminobutyric acid levels and increased the enzyme activity of Na+/K+-ATPase. Echinops spinosus is a potent neuromodulatory, antioxidant, antiinflammatory, and antiapoptotic plant that could be employed as a natural anticonvulsant in the future.
Collapse
|
13
|
Carneiro TJ, Vojtek M, Gonçalves-Monteiro S, Batista de Carvalho ALM, Marques MPM, Diniz C, Gil AM. Effect of Pd 2Spermine on Mice Brain-Liver Axis Metabolism Assessed by NMR Metabolomics. Int J Mol Sci 2022; 23:13773. [PMID: 36430252 PMCID: PMC9693583 DOI: 10.3390/ijms232213773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martin Vojtek
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|