1
|
Li D, Chen P, Du H, Li Z, Li M, Xu Y. 3D-Printed Shape Memory and Piezoelectric Bifunctional Thermoplastic Polyurethane/Polyvinylidene Fluoride Porous Composite Scaffold for Bone Regeneration. ACS Biomater Sci Eng 2024; 10:7100-7110. [PMID: 39420550 DOI: 10.1021/acsbiomaterials.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Physical stimulations such as mechanical and electric stimulation can continuously work on bone defect locations to maintain and enhance cell activity, and it has become a hotspot for research in the field of bone repair. Herein, bifunctional porous composite scaffolds with shape memory and piezoelectric functions were fabricated using thermoplastic polyurethane (TPU) and poly(vinylidene fluoride) through triply periodic minimal surfaces design and selective laser sintering technology. Thereinto, the shape fixity ratio and recovery ratio of the composite scaffold reached 98.6% and 81.2%, respectively, showing excellent shape memory functions. More importantly, its piezoelectric coefficient (d33 = 2.47 pC/N) is close to the piezoelectric constant of bone tissue (d33 = 0.7-2.3 pC/N), and the voltage released during the compression process can reach 0.5 V. Furthermore, cyclic compression experiments showed that the strength of composite scaffold was up to 8.3 times compared with the TPU scaffold. Besides, the composite scaffold showed excellent cytocompatibility. In conclusion, the composite scaffold is expected to continuously generate mechanical and electric stimulation due to shape memory and piezoelectric function, respectively, which provide an effective strategy for bone repair.
Collapse
Affiliation(s)
- Dongying Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Peng Chen
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Haocheng Du
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Zonghan Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| | - Mengqi Li
- Shaoyang Industry Polytechnic College, Shaoyang 422000, China
| | - Yong Xu
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
| |
Collapse
|
2
|
Wang R, Zhou J, Xiang H, Hu Z, Yu S, Zhai G, Zhu L, Zhu M. In Situ Growth of Highly Compatible Cu 2O-GO Hybrids Via Amino-Modification for Melt-Spun Efficient Antibacterial Polyamide 6 Fibers. Macromol Rapid Commun 2024; 45:e2400302. [PMID: 38877645 DOI: 10.1002/marc.202400302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Polyamide 6 (PA6) fiber has the advantages of high strength and good wear resistance. However, it is still challenging to effectively load inorganic antibacterial agents into polymer substrates without antimicrobial activity. In this work, graphene oxide is used as a carrier, which is modified with an aminosilane coupling agent (AEAPTMS) to enhance the compatibility and antimicrobial properties of the inorganic material, as well as to improve its thermal stability in a high-temperature melting environment. Cuprous oxide-loaded aminated grapheme (Cu2O-GO-NH2) is constructed by in situ growth method, and further PA6/Cu2O-GO-NH2 fibers are prepared by in situ polymerization. The composite fiber has excellent washing resistance. After 50 times of washing, its bactericidal rates against Bacillus subtilis and Escherichia coli are 98.85% and 99.99%, respectively. In addition, the enhanced compatibility of Cu2O-GO-NH2 with the PA6 matrix improves the orientation and crystallinity of the composite fibers. Compared with PA6/Cu2O-GO fibers, the fracture strength of PA6/Cu2O-GO-NH2 fibers increases from 3.0 to 4.2 cN/dtex when the addition of Cu2O-GO-NH2 is 0.2 wt%. Chemical modification and in situ concepts help to improve the compatibility of inorganic antimicrobial agents with organic polymers, which can be applied to the development of medical textiles.
Collapse
Affiliation(s)
- Ruixue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jialiang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Jiangsu Gem Advanced Fiber Materials Research Institute Co., Ltd, Nantong, 226000, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Gongxun Zhai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Li D, Du H, Guo W, Chen M, Guo X, Li P, Zhou Y, Chen P, Li M, Xu Y. Crosslinking of a polycaprolactone/tourmaline scaffold by sodium stearate with improved mechanical strength and bioactivity. RSC Adv 2023; 13:24519-24535. [PMID: 37588979 PMCID: PMC10426393 DOI: 10.1039/d3ra04273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Although polycaprolactone (PCL) matrix composites have been extensively studied, the weak interface with nanofillers limits their further applications in bone tissue engineering. Herein, this study has designed a porous bone scaffold model using the triply periodic minimal surfaces (TPMS), and the optimal porosity was determined by comparing the mechanical properties. A sodium stearate-modified PCL/tourmaline (PCL/TM) composite scaffold with a strong interfacial effect was prepared by selective laser sintering technology. Wherein, sodium stearate acts as a bridge to improve the interaction between TM and PCL interface, while promoting its uniform dispersion. The results showed that the PCL/3% modified TM specimens exhibit the optimum mechanical properties, and their ultimate tensile and compressive strength increases by 21.8% and 32.1%, respectively, compared with pure PCL. The factors of mechanical enhancement of composite scaffolds can be elaborated from the construction of interface bridges. On the one hand, the carboxyl group at one end of sodium stearate will interact with the hydroxyl group on the surface of TM to enhance interfacial adsorption by forming ionic bonds and hydrogen bonds. On the other hand, the hydrophobic long chain at the other end of sodium stearate is universally compatible with hydrophobic PCL, thereby improving the dispersion of TM. These characteristics make the PCL/TM composite scaffold a valuable reference for its application in bone tissue engineering.
Collapse
Affiliation(s)
- Dongying Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Haocheng Du
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Wenmin Guo
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Meigui Chen
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Xiaoping Guo
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Pin Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Yanrong Zhou
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Peng Chen
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Mengqi Li
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| | - Yong Xu
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University Shaoyang 422000 China
| |
Collapse
|
4
|
Chen A, Li X, Han W. Construction of spherical cellulose nanocrystals synergized with graphene oxide to stabilize Pickering emulsions. Int J Biol Macromol 2023; 242:124499. [PMID: 37080402 DOI: 10.1016/j.ijbiomac.2023.124499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
In this study, we prepared spherical cellulose nanocrystals (S-CNCs) and stabilized n-hexadecane Pickering emulsions in conjunction with graphene oxide (GO), exploring the interaction between S-CNCs and GO in the emulsions. Both S-CNCs and GO are amphiphilic and synergistically stabilize Pickering emulsions by adhering to the surface of oil droplets and within the emulsion space through hydrogen bonding. GO's two-dimensional sheets assemble into a 3D network structure, further improving the stability of Pickering emulsions. Consequently, the stability of Pickering emulsions can be adjusted by altering the S-CNCs/GO ratio, modifying the spatial distribution relationship of stabilizers in the emulsions. At an S-CNCs concentration of 1 g/L and a GO concentration of 3 g/L, the Pickering emulsion demonstrated excellent stability and exhibited no delamination after 31 days of storage. Thus, the S-CNCs/GO combination serves as an effective Pickering emulsion stabilizer, utilizing the synergistic effect between the two components.
Collapse
Affiliation(s)
- Anxiang Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xia Li
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Wenjia Han
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
5
|
Xu Z, Li Y, Xu D, Li L, Xu Y, Chen L, Liu Y, Sun J. Improvement of mechanical and antibacterial properties of porous nHA scaffolds by fluorinated graphene oxide. RSC Adv 2022; 12:25405-25414. [PMID: 36199313 PMCID: PMC9450491 DOI: 10.1039/d2ra03854d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/28/2022] [Indexed: 12/02/2022] Open
Abstract
Nano-hydroxyapatite (nHA) is widely used as a bio-scaffold material due to its good bioactivity and biocompatibility. In this study, fluorinated graphene oxide (FG) was added to nHA to improve its poor formability, weak mechanical properties, undesirable antimicrobial activity and other disadvantages that affect its clinical application. FG was synthesized by a simple hydrothermal method. Novel porous composite scaffolds were prepared by adding different weight ratios (0.1 wt%, 0.5 wt% and 1 wt%) of FG to nHA using the 3D printing technique. The morphology, phase composition and mechanical properties of the composite scaffolds were characterized. In addition, the degradation performance of the composite scaffolds, antibacterial activity against Staphylococcus aureus and Escherichia coli, and cytocompatibility were also investigated. The results showed that the nHA/FG composite scaffold was successfully prepared with a uniform distribution of FG on the scaffold. The mechanical properties showed that the compression strength of the nHA/FG composite scaffold was significantly higher than that of the nHA scaffold (7.22 ± 1.43 MPa). The porosity of all composite scaffolds was above 70%. The addition of FG significantly improved the mechanical properties of the nHA scaffold without affecting the porosity of the scaffold. In addition, the 0.5 wt% nHA/FG scaffold exhibited satisfactory cytocompatibility and antibacterial properties. Therefore, the constructed nHA/FG composite scaffold can be considered as a novel antimicrobial bone substitute material with good application prospects. Nano-hydroxyapatite (nHA) is widely used as a bio-scaffold material. In this study, fluorinated graphene oxide (FG) was added to nHA to improve its poor formability, weak mechanical properties and undesirable antimicrobial activity that affect its clinical application.![]()
Collapse
Affiliation(s)
- Zexian Xu
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yali Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dian Xu
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Li Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yaoxiang Xu
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
- Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
| | - Liqiang Chen
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yanshan Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
- Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery, Qingdao, China
| | - Jian Sun
- The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology of Qingdao University, Qingdao, China
- Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao, China
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery, Qingdao, China
| |
Collapse
|