1
|
Kakkar S, Gupta P, Singh Yadav SP, Raj D, Singh G, Chauhan S, Mishra MK, Martín-Ortega E, Chiussi S, Kant K. Lateral flow assays: Progress and evolution of recent trends in point-of-care applications. Mater Today Bio 2024; 28:101188. [PMID: 39221210 PMCID: PMC11364909 DOI: 10.1016/j.mtbio.2024.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Paper based point-of-care (PoC) detection platforms applying lateral flow assays (LFAs) have gained paramount approval in the diagnostic domain as well as in environmental applications owing to their ease of utility, low cost, and rapid signal readout. It has centralized the aspect of self-evaluation exhibiting promising potential in the last global pandemic era of Covid-19 implementing rapid management of public health in remote areas. In this perspective, the present review is focused towards landscaping the current framework of LFAs along with integration of components and characteristics for improving the assay by pushing the detection limits. The review highlights the synergistic aspects of assay designing, sample enrichment strategies, novel nanomaterials-based signal transducers, and high-end analytical techniques that contribute significantly towards sensitivity and specificity enhancement. Various recent studies are discussed supporting the innovations in LFA systems that focus upon the accuracy and reliability of rapid PoC testing. The review also provides a comprehensive overview of all the possible difficulties in commercialization of LFAs subjecting its applicability to pathogen surveillance, water and food testing, disease diagnostics, as well as to agriculture and environmental issues.
Collapse
Affiliation(s)
- Saloni Kakkar
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, India
| | - Shiv Pratap Singh Yadav
- Council of Scientific and Industrial Research (CSIR)- Centre for Cellular & Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Garima Singh
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Sakshi Chauhan
- Dept. of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | - Elena Martín-Ortega
- IFCAE, Research Institute of Physics and Aerospace Science, Universidade de Vigo, Ourense, 32004, Spain
| | - Stefano Chiussi
- CINTECX, Universidade de Vigo, New Materials Group, Vigo, 36310, Spain
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo, 36310, Spain
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, U.P., India
| |
Collapse
|
2
|
Vignesh V, Castro-Dominguez B, James TD, Gamble-Turner JM, Lightman S, Reis NM. Advancements in Cortisol Detection: From Conventional Methods to Next-Generation Technologies for Enhanced Hormone Monitoring. ACS Sens 2024; 9:1666-1681. [PMID: 38551608 PMCID: PMC11059103 DOI: 10.1021/acssensors.3c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The hormone cortisol, released as the end-product of the hypothalamic-pituitary-adrenal (HPA) axis, has a well-characterized circadian rhythm that enables an allostatic response to external stressors. When the pattern of secretion is disrupted, cortisol levels are chronically elevated, contributing to diseases such as heart attacks, strokes, mental health disorders, and diabetes. The diagnosis of chronic stress and stress related disorders depends upon accurate measurement of cortisol levels; currently, it is quantified using mass spectroscopy or immunoassay, in specialized laboratories with trained personnel. However, these methods are time-consuming, expensive and are unable to capture the dynamic biorhythm of the hormone. This critical review traces the path of cortisol detection from traditional laboratory-based methods to decentralised cortisol monitoring biosensors. A complete picture of cortisol biology and pathophysiology is provided, and the importance of precision medicine style monitoring of cortisol is highlighted. Antibody-based immunoassays still dominate the pipeline of development of point-of-care biosensors; new capture molecules such as aptamers and molecularly imprinted polymers (MIPs) combined with technologies such as microfluidics, wearable electronics, and quantum dots offer improvements to limit of detection (LoD), specificity, and a shift toward rapid or continuous measurements. While a variety of different sensors and devices have been proposed, there still exists a need to produce quantitative tests for cortisol ─ using either rapid or continuous monitoring devices that can enable a personalized medicine approach to stress management. This can be addressed by synergistic combinations of technologies that can leverage low sample volumes, relevant limit of detection and rapid testing time, to better account for cortisol's shifting biorhythm. Trends in cortisol diagnostics toward rapid and continuous monitoring of hormones are highlighted, along with insights into choice of sample matrix.
Collapse
Affiliation(s)
- Visesh Vignesh
- Department
of Chemical Engineering and Centre for Bioengineering and Biomedical
Technologies (CBio) University of Bath, BA2 7AY Bath, U.K.
| | - Bernardo Castro-Dominguez
- Department
of Chemical and Engineering and Digital Manufacturing and Design University
of Bath, BA2 7AY Bath, U.K.
| | - Tony D. James
- Department
of Chemistry, University of Bath, BA2 7AY Bath, U.K.
| | | | - Stafford Lightman
- Translational
Health Sciences, Bristol Medical School, University of Bristol, BS1 3NY Bristol, U.K.
| | - Nuno M. Reis
- Department
of Chemical Engineering and Centre for Bioengineering and Biomedical
Technologies (CBio) University of Bath, BA2 7AY Bath, U.K.
| |
Collapse
|
3
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
4
|
Li G, Li Q, Wang X, Liu X, Zhang Y, Li R, Guo J, Zhang G. Lateral flow immunoassays for antigens, antibodies and haptens detection. Int J Biol Macromol 2023; 242:125186. [PMID: 37268073 PMCID: PMC10232721 DOI: 10.1016/j.ijbiomac.2023.125186] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Lateral flow immunoassay (LFIA) is widely used as a rapid point-of-care testing (POCT) technique in food safety, veterinary and clinical detection on account of the accessible, fast and low-cost characteristics. After the outbreak of the coronavirus disease 2019 (COVID-19), different types of LFIAs have attracted considerable interest because of their ability of providing immediate diagnosis directly to users, thereby effectively controlling the outbreak. Based on the introduction of the principles and key components of LFIAs, this review focuses on the major detection formats of LFIAs for antigens, antibodies and haptens. With the rapid innovation of detection technologies, new trends of novel labels, multiplex and digital assays are increasingly integrated with LFIAs. Therefore, this review will also introduce the development of new trends of LFIAs as well as its future perspectives.
Collapse
Affiliation(s)
- Ge Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao Liu
- Henan Medical College, Zhengzhou 451191, China
| | - Yuhang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China; Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Liu X, Chen Y, Bu T, Deng Z, Zhao L, Tian Y, Jia C, Li Y, Wang R, Wang J, Zhang D. Nanosheet antibody mimics based label-free and dual-readout lateral flow immunoassay for Salmonella enteritidis rapid detection. Biosens Bioelectron 2023; 229:115239. [PMID: 36965382 DOI: 10.1016/j.bios.2023.115239] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Portable devices for on-site foodborne pathogens detection are urgently desirable. Lateral flow immunoassay (LFIA) provides an efficient strategy for pathogens detection, however, antibody labeling independence and detection reliability, are still challenging. Here, we report the development of a label-free LFIA with dual-readout using glucan-functionalized two-dimensional (2D) transition metal dichalcogenides (TMDs) tungsten disulfide (WS2) as detection probes for sensitive detection of Salmonella enteritidis (S. enteritidis). In particular, glucan-functionalized WS2, synthesized via liquid exfoliation, are reliable detection antibody candidates which served as antibody mimics for bacteria capturing. This LFIA has not only eliminated the intricate antibody labeling process and screening of paired antibodies in conventional LFIAs, but also promised dual-readout (colorimetric/Raman) for flexible detection. Under optimized conditions, this LFIA achieves selective detection of S. enteritidis with a low visual detection limit of 103 CFU/mL and a broad linear range of 103-108 CFU/mL. Additionally, the LFIA could be successfully applied in drinking water and milk with recoveries of 85%-109%. This work is desirable to expand the application of 2D TMDs in biosensors and offers a brand-new alternative protocol of detection antibodies in foodborne pathogens detection.
Collapse
Affiliation(s)
- Xiaojing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaqian Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Ziai Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Zhao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
| | - Yanli Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Conghui Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Mattiello CJ, Stickle DF. Characterization by image analysis of the dose vs response curve for a qualitative serum hCG lateral flow immunoassay. Clin Chim Acta 2023; 538:175-180. [PMID: 36423702 DOI: 10.1016/j.cca.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND As an adjunct to verification of performance characteristics of a qualitative serum hCG lateral flow immunoassay (LFI), we performed image analysis to characterize the dose vs response curve (visibility of the test line), as a means of understanding the transition from negative to positive as a function of increasing [hCG]. METHODS Using serum samples of known [hCG], device images were obtained using a scanner at the prescribed reading time (5 min). Image analysis (using Python and R) was used to obtain the integral (S) of the test-line color as a function of [hCG]. RESULTS Data for S as a function of [hCG] were well characterized by a simple hyperbola: S = Smax [hCG]/([hCG] + K), where K = 202 mIU/ml (r = 0.997). Replicates of S at K had CV of 7.3 %. By eye, uncertainty of test results among users occurred only below the assay's stated sensitivity of 10 mIU/ml, in region of S < 3 % of Smax, and signal:noise ratio < 3. CONCLUSIONS By image analysis, the dose vs response (Test line integral) for this qualitative serum hCG LFI was a simple hyperbola. Characterization of the dose vs response curve was useful in verification of the assay's performance characteristics.
Collapse
|
7
|
Vu BV, Lei R, Mohan C, Kourentzi K, Willson RC. Flash Characterization of Smartphones Used in Point-of-Care Diagnostics. BIOSENSORS 2022; 12:1060. [PMID: 36551027 PMCID: PMC9776052 DOI: 10.3390/bios12121060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Rapidly growing interest in smartphone cameras as the basis of point-of-need diagnostic and bioanalytical technologies increases the importance of quantitative characterization of phone optical performance under real-world operating conditions. In the context of our development of lateral-flow immunoassays based on phosphorescent nanoparticles, we have developed a suite of tools for characterizing the temporal and spectral profiles of smartphone torch and flash emissions, and their dependence on phone power state. In this work, these tools are described and documented to make them easily available to others, and demonstrated by application to characterization of Apple iPhone 5s, iPhone 6s, iPhone 8, iPhone XR, and Samsung Note8 flash performance as a function of time and wavelength, at a variety of power settings. Flash and torch intensity and duration vary with phone state and among phone models. Flash has high variability when the battery charge is below 10%, thus, smartphone-based Point-of-Care (POC) tests should only be performed at a battery level of at least 15%. Some output variations could substantially affect the results of assays that rely on the smartphone flash.
Collapse
Affiliation(s)
- Binh V. Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Rongwei Lei
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Escuela de Medicina y Ciencias de la Salud ITESM, Monterrey 64710, NL, Mexico
| |
Collapse
|
8
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|