1
|
Lee PY, Gotla S, Matysiak S. Inhibition of Aβ 16-22 Aggregation by [TEA] +[Ms] - Follows Weakening of the Hydrophobic Core and Sequestration of Peptides in Ionic Liquid Nanodomains. J Phys Chem B 2024; 128:9143-9150. [PMID: 39283804 DOI: 10.1021/acs.jpcb.4c05135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We developed a coarse-grained model for the protic ionic liquid, triethylammonium mesylate ([TEA]+[Ms]-), to characterize its inhibitory effects on amyloid aggregation using the K16LVFFAE22 fragment of the amyloid-β (Aβ16-22) as a model amyloidogenic peptide. In agreement with previous experiments, coarse-grained molecular dynamics simulations showed that increasing concentrations of [TEA]+[Ms]- in aqueous media led to increasingly small Aβ16-22 aggregates with low beta-sheet contents. The cause of [TEA]+[Ms]-'s inhibition of peptide aggregation was found to be a result of two interrelated effects. At a local scale, the enrichment of interactions between [TEA]+ cations and hydrophobic phenylalanine side chains weakened the hydrophobic cores of amyloid aggregates, resulting in poorly ordered structures. At a global level, peptides tended to localize at the interfaces of IL-rich nanostructures with water. At high IL concentrations, when the IL-water interface was large or fragmented, Aβ16-22 peptides were dispersed in the simulation cell, sometimes sequestered at unaggregated monomeric states. Together, these phenomena underlie [TEA]+[Ms]-'s inhibition of amyloid aggregation. This work addresses the critical lack of knowledge on the mechanisms of protein-ionic liquid interactions and may have broader implications for industrial applications.
Collapse
Affiliation(s)
- Pei-Yin Lee
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Suhas Gotla
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Gotla S, Poddar A, Borison I, Matysiak S. Unravelling heparin's enhancement of amyloid aggregation in a model peptide system. Phys Chem Chem Phys 2024; 26:22278-22285. [PMID: 39136546 DOI: 10.1039/d4cp02331e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A coarse-grained (CG) model for heparin, an anionic polysaccharide, was developed to investigate the mechanisms of heparin's enhancement of fibrillation in many amyloidogenic peptides. CG molecular dynamics simulations revealed that heparin, by forming contacts with the model amyloidogenic peptide, amyloid-β's K16LVFFAE22 fragment (Aβ16-22), promoted long-lived and highly beta-sheet-like domains in the peptide oligomers. Concomitantly, heparin-Aβ16-22 contacts suppressed the entropy of mixing of the oligomers' beta-domains. Such oligomers could make better seeds for fibrillation, potentially contributing to heparin's fibril-enhancing behaviour. Additionally, reductions in heparin's flexibility led to delayed aggregation, and less ordered Aβ16-22 oligomers, thus offering insights into the contrasting inhibition of fibrillation by the relatively rigid polysaccharide, chitosan.
Collapse
Affiliation(s)
- Suhas Gotla
- Fischell Department of Engineering, University of Maryland, College Park, Maryland, USA.
| | - Anushka Poddar
- Fischell Department of Engineering, University of Maryland, College Park, Maryland, USA.
| | - Ilana Borison
- Fischell Department of Engineering, University of Maryland, College Park, Maryland, USA.
| | - Silvina Matysiak
- Fischell Department of Engineering, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
3
|
Nanajkar N, Sahoo A, Matysiak S. Unraveling the Molecular Complexity of N-Terminus Huntingtin Oligomers: Insights into Polymorphic Structures. J Phys Chem B 2024; 128:7761-7769. [PMID: 39092631 DOI: 10.1021/acs.jpcb.4c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder resulting from an abnormal expansion of polyglutamine (polyQ) repeats in the N-terminus of the huntingtin protein. When the polyQ tract surpasses 35 repeats, the mutated protein undergoes misfolding, culminating in the formation of intracellular aggregates. Research in mouse models suggests that HD pathogenesis involves the aggregation of N-terminal fragments of the huntingtin protein (htt). These early oligomeric assemblies of htt, exhibiting diverse characteristics during aggregation, are implicated as potential toxic entities in HD. However, a consensus on their specific structures remains elusive. Understanding the heterogeneous nature of htt oligomers provides crucial insights into disease mechanisms, emphasizing the need to identify various oligomeric conformations as potential therapeutic targets. Employing coarse-grained molecular dynamics, our study aims to elucidate the mechanisms governing the aggregation process and resultant aggregate architectures of htt. The polyQ tract within htt is flanked by two regions: an N-terminal domain (N17) and a short C-terminal proline-rich segment. We conducted self-assembly simulations involving five distinct N17 + polyQ systems with polyQ lengths ranging from 7 to 45, utilizing the ProMPT force field. Prolongation of the polyQ domain correlates with an increase in β-sheet-rich structures. Longer polyQ lengths favor intramolecular β-sheets over intermolecular interactions due to the folding of the elongated polyQ domain into hairpin-rich conformations. Importantly, variations in polyQ length significantly influence resulting oligomeric structures. Shorter polyQ domains lead to N17 domain aggregation, forming a hydrophobic core, while longer polyQ lengths introduce a competition between N17 hydrophobic interactions and polyQ polar interactions, resulting in densely packed polyQ cores with outwardly distributed N17 domains. Additionally, at extended polyQ lengths, we observe distinct oligomeric conformations with varying degrees of N17 bundling. These findings can help explain the toxic gain-of-function that htt with expanded polyQ acquires.
Collapse
Affiliation(s)
- Neha Nanajkar
- Department of Biology, University of Maryland, College Park, Maryland 20740, United States
| | - Abhilash Sahoo
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, United States
- Center for Computational Mathematics, Flatiron Institute, New York, New York 10010, United States
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20740, United States
| |
Collapse
|
4
|
Verona G, Raimondi S, Canetti D, Mangione PP, Marchese L, Corazza A, Lavatelli F, Gillmore JD, Taylor GW, Bellotti V, Giorgetti S. Degradation versus fibrillogenesis, two alternative pathways modulated by seeds and glycosaminoglycans. Protein Sci 2024; 33:e4931. [PMID: 38380705 PMCID: PMC10880434 DOI: 10.1002/pro.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The mechanism that converts native human transthyretin into amyloid fibrils in vivo is still a debated and controversial issue. Commonly, non-physiological conditions of pH, temperature, or organic solvents are used in in vitro models of fibrillogenesis of globular proteins. Transthyretin amyloid formation can be achieved under physiological conditions through a mechano-enzymatic mechanism involving specific serine proteases such as trypsin or plasmin. Here, we investigate S52P and L111M transthyretin variants, both causing a severe form of systemic amyloidosis mostly targeting the heart at a relatively young age with heterogeneous phenotype among patients. Our studies on thermodynamics show that both proteins are significantly less stable than other amyloidogenic variants. However, despite a similar thermodynamic stability, L111M variant seems to have enhanced susceptibility to cleavage and a lower tendency to form fibrils than S52P in the presence of specific proteases and biomechanical forces. Heparin strongly enhances the fibrillogenic capacity of L111M transthyretin, but has no effect on the S52P variant. Fibrillar seeds similarly affect the fibrillogenesis of both proteins, with a stronger effect on the L111M variant. According to our model of mechano-enzymatic fibrillogenesis, both full-length and truncated monomers, released after the first cleavage, can enter into fibrillogenesis or degradation pathways. Our findings show that the kinetics of the two processes can be affected by several factors, such as intrinsic amyloidogenicity due to the specific mutations, environmental factors including heparin and fibrillar seeds that significantly accelerate the fibrillogenic pathway.
Collapse
Affiliation(s)
- Guglielmo Verona
- Centre for AmyloidosisUniversity College LondonLondonUK
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Sara Raimondi
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Diana Canetti
- Centre for AmyloidosisUniversity College LondonLondonUK
| | - P. Patrizia Mangione
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | | | - Alessandra Corazza
- Department of Medicine (DAME)University of UdineUdineItaly
- Istituto Nazionale Biostrutture e BiosistemiRomeItaly
| | - Francesca Lavatelli
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | | | | | - Vittorio Bellotti
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Sofia Giorgetti
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| |
Collapse
|
5
|
Jain M, Sahoo A, Matysiak S. Modulation of Aβ 16-22 aggregation by glucose. Phys Chem Chem Phys 2024; 26:5038-5044. [PMID: 38258497 DOI: 10.1039/d3cp04494g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The self-assembly of amyloid-beta (Aβ) peptides into fibrillar structures in the brain is a signature of Alzheimer's disease. Recent studies have reported correlations between Alzheimer's disease and type-2 diabetes. Structurally, hyperglycemia induces covalent protein crosslinkings by advanced glycation end products (AGE), which can affect the stability of Aβ oligomers. In this work, we leverage physics-based coarse-grained molecular simulations to probe alternate thermodynamic pathways that affect peptide aggregation propensities at varying concentrations of glucose molecules. Similar to previous experimental reports, our simulations show a glucose concentration-dependent increase in Aβ aggregation rates, without changes in the overall secondary structure content. We discovered that glucose molecules prefer partitioning onto the aggregate-water interface at a specific orientation, resulting in a loss of molecular rotational entropy. This effectively hastens the aggregation rates, as peptide self-assembly can reduce the available surface area for peptide-glucose interactions. This work introduces a new thermodynamic-driven pathway, beyond chemical cross-linking, that can modulate Aβ aggregation.
Collapse
Affiliation(s)
- Meenal Jain
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Abhilash Sahoo
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Silvina Matysiak
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, MD, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
6
|
Pretti E, Shell MS. Mapping the configurational landscape and aggregation phase behavior of the tau protein fragment PHF6. Proc Natl Acad Sci U S A 2023; 120:e2309995120. [PMID: 37983502 PMCID: PMC10691331 DOI: 10.1073/pnas.2309995120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal model for insight into the initial stages of aggregation of larger tau fragments. Even for this small peptide, however, the large length and time scales associated with fibrillization pose challenges for simulation studies of its dynamic assembly, equilibrium configurational landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained model of PHF6 for large-scale simulations of its aggregation, which we use to uncover molecular interactions and thermodynamic driving forces governing its assembly. The model, not trained on any explicit information about fibrillar structure, predicts coexistence of formed fibrils with monomers in solution, and we calculate a putative equilibrium phase diagram in concentration-temperature space. We also characterize the configurational and free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model of heparin that this widely studied cofactor enhances the aggregation propensity of PHF6 by ordering monomers during nucleation and remaining associated with growing fibrils, consistent with experimentally characterized heparin-tau interactions. Overall, this effort provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways and, furthermore, demonstrates the potential of modern multiscale modeling techniques to produce predictive models of amyloidogenic peptides simultaneously capturing sequence-specific effects and emergent aggregate structures.
Collapse
Affiliation(s)
- Evan Pretti
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106-5080
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106-5080
| |
Collapse
|
7
|
Muacevic A, Adler JR, Nigh G, McCullough PA. A Potential Role of the Spike Protein in Neurodegenerative Diseases: A Narrative Review. Cureus 2023; 15:e34872. [PMID: 36788995 PMCID: PMC9922164 DOI: 10.7759/cureus.34872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Human prion protein and prion-like protein misfolding are widely recognized as playing a causal role in many neurodegenerative diseases. Based on in vitro and in vivo experimental evidence relating to prion and prion-like disease, we extrapolate from the compelling evidence that the spike glycoprotein of SARS-CoV-2 contains extended amino acid sequences characteristic of a prion-like protein to infer its potential to cause neurodegenerative disease. We propose that vaccine-induced spike protein synthesis can facilitate the accumulation of toxic prion-like fibrils in neurons. We outline various pathways through which these proteins could be expected to distribute throughout the body. We review both cellular pathologies and the expression of disease that could become more frequent in those who have undergone mRNA vaccination. Specifically, we describe the spike protein's contributions, via its prion-like properties, to neuroinflammation and neurodegenerative diseases; to clotting disorders within the vasculature; to further disease risk due to suppressed prion protein regulation in the context of widely prevalent insulin resistance; and to other health complications. We explain why these prion-like characteristics are more relevant to vaccine-related mRNA-induced spike proteins than natural infection with SARS-CoV-2. We note with an optimism an apparent loss of prion-like properties among the current Omicron variants. We acknowledge that the chain of pathological events described throughout this paper is only hypothetical and not yet verified. We also acknowledge that the evidence we usher in, while grounded in the research literature, is currently largely circumstantial, not direct. Finally, we describe the implications of our findings for the general public, and we briefly discuss public health recommendations we feel need urgent consideration. An earlier version of this article was previously posted to the Authorea preprint server on August 16, 2022.
Collapse
|
8
|
Muronetz VI, Pozdyshev DV, Semenyuk PI. Polyelectrolytes for Enzyme Immobilization and the Regulation of Their Properties. Polymers (Basel) 2022; 14:polym14194204. [PMID: 36236151 PMCID: PMC9571273 DOI: 10.3390/polym14194204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, we considered aspects related to the application of polyelectrolytes, primarily synthetic polyanions and polycations, to immobilize enzymes and regulate their properties. We mainly focused on the description of works in which polyelectrolytes were used to create complex and unusual systems (self-regulated enzyme-polyelectrolyte complexes, artificial chaperones, polyelectrolyte brushes, layer-by-layer immobilization and others). These works represent the field of "smart polymers", whilst the trivial use of charged polymers as carriers for adsorption or covalent immobilization of proteins is beyond the scope of this short review. In addition, we have included a section on the molecular modeling of interactions between proteins and polyelectrolytes, as modeling the binding of proteins with a strictly defined, and already known, spatial structure, to disordered polymeric molecules has its own unique characteristics.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
- Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-(495)939-14-56
| | - Denis V. Pozdyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
| | - Pavel I. Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
| |
Collapse
|