1
|
Roy I, Mathur S, Deb S, Rathnam SSV, Tuti N, Shaji UP, L K, Roy A, Maji S. Benzimidazole-based mononuclear polypyridyl Cu(II) complexes: DNA binding, cleavage, and in vitro antiproliferative studies. Dalton Trans 2025; 54:6386-6401. [PMID: 40062962 DOI: 10.1039/d4dt03379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
This paper addresses the synthesis, characterization, DNA binding, cleavage, and in vitro antiproliferative activity studies of a series of heteroleptic mononuclear copper(II) complexes [Cu(L)(bpy)](ClO4)2, {1}; [Cu(L)(phen)](ClO4)2, {2}; and [Cu(L)(Mephen)](ClO4)2, {3} derived from different polypyridyl ligands, where in the complex architecture, one 2,6-bis(1-methyl-1H-benzo[d]imidazol-2-yl)pyridine(Mebzimpy) (L) moiety is connected to the central Cu metal in a tridentate fashion and the bidentate co-ligands are 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (Mephen). All the synthesized complexes were characterized using various spectroscopic and analytical methods, along with the single-crystal X-ray diffraction (SCXRD) technique. The complexes crystallize in a penta-coordinated distorted square pyramidal geometry. The redox properties of the complexes were also studied by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The DNA binding nature of the complexes was investigated utilizing absorbance spectral measurement and fluorescence quenching experiments with ethidium bromide (EB) as a DNA intercalator, employing double-stranded salmon sperm DNA (ss-DNA). Both the binding constant (Kb) and the Stern-Volmer constant (KSV) were found to be in the order of 104. In silico molecular docking analysis confirmed that all the complexes could interact with the minor groove of duplex DNA. The DNA cleaving ability of the complexes was studied by gel electrophoresis using supercoiled plasmid DNA; however, no DNA cleavage was found. DNA-binding polypyridyl complexes are well known to disrupt DNA metabolic pathways and cause cytotoxicity to rapidly growing cancer cells. Hence, cell viability analysis was also carried out with complexes 1-3. It was observed that complexes 2 and 3 prevented the proliferation of the human osteosarcoma cell line U2OS and the triple-negative breast cancer cell line MDA-MB-231. Overall, these findings could be beneficial in the design and development of future antitumor agents.
Collapse
Affiliation(s)
- Indrajit Roy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Shobhit Mathur
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Sourav Deb
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | | | - Nikhil Tuti
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | | | - Karthikeyan L
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Anindya Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Somnath Maji
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
2
|
Paliwal K, Swain A, Mishra DP, Sudhadevi Antharjanam PK, Kumar M. A novel copper(II) complex with a salicylidene carbohydrazide ligand that promotes oxidative stress and apoptosis in triple negative breast cancer cells. Dalton Trans 2024; 53:17702-17720. [PMID: 39420621 DOI: 10.1039/d4dt01914h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We report the synthesis, characterization, anti-cancer activity and mechanism of action of a novel water-soluble Cu(II) complex with salicylidene carbohydrazide as the ligand and o-phenanthroline as the co-ligand. The synthesized complex (1) was characterized by FT-IR, EPR, and electronic spectroscopy, as well as single crystal X-ray diffraction. This compound was found to be paramagnetic from EPR spectra and X-ray crystallography revealed that the molecule crystallized in an orthorhombic crystal system. The crystal lattice was asymmetric containing two distinct binuclear copper complexes containing the Schiff base as the major ligand, o-phenanthroline as a co-ligand, two nitrate anions, and two water molecules. The Cu(II) in the first site coordinated with the enolised ligand comprising enolate O-, phenolate O-, and the imine N and N,N from o-phen. The major part of this complex exists as Cu(II) coordinated with two H2O molecules at the second site with nitrate acting as the counter anion. However, a smaller portion of the complex exists where Cu(II) is coordinated with NO3- and H2O, and the remaining water molecule acts as lattice water. It was tested for DNA binding and cleavage properties which revealed that it binds in an intercalative mode to CT-DNA with Kb value of 1.25 × 104 M-1. Furthermore, cleavage studies reveal that the complex has potential for efficient DNA cleavage under both oxidative and hydrolytic conditions. It was able to enhance the rate of cleavage by 2.8 × 108 times. The complex shows good cytotoxicity to breast cancer monolayer (2D) as well as spheroid (3D) systems. The IC50 values for MDA-MB-231 and MCF-7 monolayer culture was calculated as 1.86 ± 0.17 μM and 2.22 ± 0.08 μM, respectively, and in (3D) spheroids of MDA-MB-231 cells, the IC50 value was calculated to be 1.51 ± 0.29 μM. It was observed that the complex outperformed cisplatin in both breast cancer cell lines. The cells treated with complex 1 underwent severe DNA damage, increased oxidative stress and cell cycle arrest which finally led to programmed cell death or apoptosis in triple negative breast cancer cells through an intrinsic pathway.
Collapse
Affiliation(s)
- Kumudini Paliwal
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Abinash Swain
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
| | - P K Sudhadevi Antharjanam
- Sophisticated Analytical Instrument Facility, Indian Institute of Technology-Madras, Chennai 600 036, India
| | - Manjuri Kumar
- Department of Chemical Engineering, Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| |
Collapse
|
3
|
Mamindla A, Murugan D, Varadhan M, Ajaykamal T, Rangasamy L, Palaniandavar M, Rajendiran V. Mixed-ligand copper(ii)-diimine complexes of 3-formylchromone- N 4-phenyl thiosemicarbazone: 5,6-dmp co-ligand confers enhanced cytotoxicity. RSC Adv 2024; 14:31704-31722. [PMID: 39376525 PMCID: PMC11457010 DOI: 10.1039/d4ra04997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
The promising biological applications of thiosemicarbazone derivatives have inspired the design, synthesis, and study of their Cu(ii) complexes for anticancer therapeutic applications. Herein, we have evaluated the DNA/protein binding, DNA cleaving, and cytotoxic properties of four mixed-ligand Cu(ii) complexes of the type [Cu(L)(diimine)](NO3) 1-4, where HL is 4-oxo-4H-chromene-3-carbaldehyde-4(N)-phenylthiosemicarbazone and diimine is 2,2'-bipyridine (bpy, 1) 1,10-phenanthroline (phen, 2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, 3), or dipyrido-[3,2-f:2',3'-h]-quinoxaline (dpq, 4). Interestingly, complex 3 with higher lipophilicity shows stronger DNA binding and oxidative DNA cleavage, higher ROS production, and more reversible redox behaviour, resulting in its remarkable cytotoxicity (IC50, 1.26 μM) against HeLa cervical cancer cells, and rendering it 5 times more potent than the widely used drug cisplatin. The same complex induces enhanced apoptotic cell death on HeLa cells but lower toxicity towards the non-cancerous PBMC cells. Molecular docking studies suggest that all the complexes bind in the minor groove of DNA and subdomain II of HSA, which is in close agreement with the experimental results. Also, 3 shows cytotoxicity higher than the analogous mixed ligand Cu(ii) complexes, reported already, emphasizing the importance of co-ligand in tuning the anticancer activity.
Collapse
Affiliation(s)
- Anjaneyulu Mamindla
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | - Manikandan Varadhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | | | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | | | - Venugopal Rajendiran
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| |
Collapse
|
4
|
Mohapatra D, Patra SA, Pattanayak PD, Sahu G, Sasamori T, Dinda R. Monomeric copper(II) complexes with unsymmetrical salen environment: Synthesis, characterization and study of biological activities. J Inorg Biochem 2024; 253:112497. [PMID: 38290220 DOI: 10.1016/j.jinorgbio.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Three new ONNO-donor tetradentate unsymmetrical salen ligands were synthesized by using o-phenyl diamine with substituted salicylaldehydes followed by a two-step reaction methodology. These three ligands by reaction with Cu(OAc)2.4H2O produced three new monomeric Cu(II) complexes, [CuII(L1-3)] (1-3). Elemental analysis, IR, UV-vis, NMR, and HR-ESI-MS techniques were used to analyze and characterize all the synthesized ligands and their corresponding metal complexes. Molecular structures of 1-3 were confirmed by the single-crystal-XRD analysis. Furthermore, the DNA binding ability of these complexes was checked through UV-vis, fluorescence spectroscopy, and also by circular dichroism studies. All the complexes were found to show an intercalation mode of binding with the Kb value in the range of 104-105 M-1. Finally, 1-3 was tested against two malignant (HeLa and A549) and non-cancerous (NIH-3T3) cell lines to check their in vitro antiproliferative activities. Among all, 1 is the most cytotoxic of the series having IC50 values of 5.7 ± 0.9 and 6.0 ± 0.3 μM against HeLa and A549 cell lines, respectively. This result is also consistent with the DNA binding order. Furthermore, the apoptotic mode of cell death of all the complexes was also evaluated by DAPI, AO/EB, and Annexin V-FITC/PI double staining assays.
Collapse
Affiliation(s)
- Deepika Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Takahiro Sasamori
- University of Tsukuba, Institute of Natural Sciences B-506, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
5
|
Mathur S, Karumban KS, Muley A, Tuti N, Shaji UP, Roy I, Verma A, Kumawat MK, Roy A, Maji S. Chromophore appended DPA-based copper(II) complexes with a diimine motif towards DNA binding and fragmentation studies. Dalton Trans 2024; 53:1163-1177. [PMID: 38105760 DOI: 10.1039/d3dt01864d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mixed ligand copper(II) complexes [Cu(L1)(bpy)](ClO4)21 and [Cu(L2)(bpy)](ClO4)22 (where L1 = 1-(anthracen-9-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine, L2 = 1-(pyren-1-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine and bpy = 2,2'-bipyridine) were synthesised and characterised thoroughly via different analytical and spectroscopic techniques i.e., UV-vis spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, HRMS and EPR spectroscopy. The molecular structures of the synthesised complexes were obtained using the single-crystal X-ray diffraction technique. Both complexes exhibited penta-coordinated and acquired distorted square pyramidal geometry. The redox behaviour of complexes 1 and 2 was investigated by employing cyclic voltammetry. The DNA binding study was carried out by UV-vis spectrophotometry using double-stranded salmon sperm DNA (ds-ss-DNA). The binding constant (Kb) values of 1 and 2 were 0.11 × 104 M-1 and 1.05 × 104 M-1, respectively, which indicates that 2 has better binding ability than 1. This might be due to the higher conjugative abilities with the extended surface area of the aromatic pyrene ring compared to the anthracene moiety. The fluorescence quenching experiments were also performed with EB bound DNA (EB-DNA) and Stern-Volmer constant (KSV) values were calculated as 1.23 × 105 M-1 and 1.39 × 105 M-1 for 1 and 2, respectively, suggesting that 2 showed stronger interaction with ss-DNA than 1. The molecular docking data support the DNA-binding studies, with the sites and mode of interactions against B-DNA varying with 1 and 2. Evaluation of the DNA binding properties of the complexes to linearized plasmid DNA indicated that 2 had modest DNA binding properties, which is a pre-requisite for a genotoxic agent. The effect of 1 and 2 on cell survival was analysed using HeLa cells by MTT assay and it was observed that the IC50 values of 1 and 2 were 43.7 μM and 18.6 μM, respectively. Our study paves the way for the designing of bio-inspired novel mixed metal complexes, which shows promising results for further exploration of molecular and mechanistic studies towards the development of non-platinum based economical metallodrugs.
Collapse
Affiliation(s)
- Shobhit Mathur
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Kalai Selvan Karumban
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Arabinda Muley
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Nikhil Tuti
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | | | - Indrajit Roy
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Anushka Verma
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Manoj Kumar Kumawat
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Anindya Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Somnath Maji
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
6
|
Paliwal K, Haldar P, Antharjanam PKS, Kumar M. Synthesis, Characterization, DNA/HSA Interaction, and Cytotoxic Activity of a Copper(II) Thiolate Schiff Base Complex and Its Corresponding Water-Soluble Stable Sulfinato-O Complex Containing Imidazole as a Co-ligand. ACS OMEGA 2023; 8:21948-21968. [PMID: 37360467 PMCID: PMC10286277 DOI: 10.1021/acsomega.3c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
A Cu(II) thiolato complex [CuL(imz)] (1) (H2L = o-HOC6H4C(H)=NC6H4SH-o) and the corresponding water-soluble stable sulfinato-O complex [CuL'(imz)] (2) (H2L' = o-HOC6H4C(H)=NC6H4S(=O)OH) were synthesized and characterized using physicochemical techniques. Compound 2 is found to be a dimer in the solid state as characterized using single-crystal X-ray crystallography. XPS studies clearly showed the differences in the sulfur oxidation states in 1 and 2. Both compounds are found to be monomers in solution as revealed from their four-line X-band electron paramagnetic resonance spectra in CH3CN at room temperature (RT). 1-2 were tested to assess their ability to exhibit DNA binding and cleavage activity. Spectroscopic studies and viscosity experiments suggest that 1-2 bind to CT-DNA through the intercalation mode having moderate binding affinity (Kb ∼ 104 M-1). This is further supported by molecular docking studies of complex 2 with CT-DNA. Both complexes display significant oxidative cleavage of pUC19 DNA. Complex 2 also showed hydrolytic DNA cleavage. The interaction of 1-2 with HSA revealed that they have strong ability to quench the intrinsic fluorescence of HSA by a static quenching mechanism (kq ∼ 1013 M-1 s-1). This is further complemented by Förster resonance energy transfer studies that revealed binding distances of r = 2.85 and 2.75 nm for 1 and 2, respectively, indicating high potential for energy transfer from HSA to complex. 1-2 were capable of inducing conformational changes of HSA at secondary and tertiary levels as observed from synchronous and three-dimensional fluorescence spectroscopy. Molecular docking studies with 2 indicate that it forms strong hydrogen bonds with Gln221 and Arg222 located near the entrance of site-I of HSA. 1-2 showed potential toxicity in human cervical cancer HeLa cells, lung cancer A549 cells, and cisplatin-resistant breast cancer MDA-MB-231 cells and appeared to be most potent against HeLa cells (IC50 = 2.04 μM for 1 and 1.86 μM for 2). In HeLa cells, 1-2 mediated cell cycle arrest in S and G2/M phases, which progressed into apoptosis. Apoptotic features seen from Hoechst and AO/PI staining, damaged cytoskeleton actin viewed from phalloidin staining, and increased caspase-3 activity upon treatment with 1-2 collectively suggested that they induced apoptosis in HeLa cells via caspase activation. This is further supported by western blot analysis of the protein sample extracted from HeLa cells treated with 2.
Collapse
Affiliation(s)
- Kumudini Paliwal
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Paramita Haldar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | | | - Manjuri Kumar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| |
Collapse
|
7
|
Lu W, Tang J, Gu Z, Sun L, Wei H, Wang Y, Yang S, Chi X, Xu L. Crystal structure, in vitro cytotoxicity, DNA binding and DFT calculations of new copper (II) complexes with coumarin-amide ligand. J Inorg Biochem 2023; 238:112030. [PMID: 36327496 DOI: 10.1016/j.jinorgbio.2022.112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
This work describes the synthesis, anticancer activity and electron structure study of two Cu (II) complexes with coumarin-3-formyl-(3-(aminomethyl) pyridine) ligand (L) - C1 (Cu2L2(OAc)4) and C2 (CuL2(NO3)2). The structure of C1 and C2 was confirmed by elemental analysis, FTIR, and single-crystal X-ray analysis. Complex C1 crystallizes as binuclear where two Cu (II) ions are bridged by four acetate ligands while C2 is a mononuclear complex with twisted octahedral geometry. Density functional theory (DFT) calculations revealed that electronic transitions originate from metal-ligand charge transfer and d-d transitions of metal ions. According to the results of UV-Vis and fluorescence titrations, C1 and C2 intercalate with DNA with the binding constants of 6.9 × 105 M-1 and 5.9 × 105 M-1, respectively. The in vitro cytotoxicity assays on four cancer cell lines (HeLa, HepG2, MCF-7 and A549) and a normal HUVEC cell line indicated higher anti-MCF-7 activity of C2 compared with cisplatin (IC50 = 2.86 ± 0.08 μM vs. 9.07 ± 0.10 μM). Moreover, C2 had superior selectivity since IC50 toward HUVEC cells was over 150 μM compared with 0.58 ± 0.05 μM for cisplatin. We concluded that the anti-MCF activity of mononuclear C2 complex is better than that of binuclear C1 and cisplatin. Therefore, C2 has been selected as a hit compound to develop novel non‑platinum anticancer agents through modification of coumarin-amide structure and variation of copper (II) salts.
Collapse
Affiliation(s)
- Wen Lu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jiongya Tang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhenzhen Gu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lu Sun
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Haimeng Wei
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanqin Wang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shilong Yang
- The Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xingwei Chi
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li Xu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Institute of Material Physics&Chemistry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|