1
|
Asim MN, Asif T, Mehmood F, Dengel A. Peptide classification landscape: An in-depth systematic literature review on peptide types, databases, datasets, predictors architectures and performance. Comput Biol Med 2025; 188:109821. [PMID: 39987697 DOI: 10.1016/j.compbiomed.2025.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Peptides are gaining significant attention in diverse fields such as the pharmaceutical market has seen a steady rise in peptide-based therapeutics over the past six decades. Peptides have been utilized in the development of distinct applications including inhibitors of SARS-COV-2 and treatments for conditions like cancer and diabetes. Distinct types of peptides possess unique characteristics, and development of peptide-specific applications require the discrimination of one peptide type from others. To the best of our knowledge, approximately 230 Artificial Intelligence (AI) driven applications have been developed for 22 distinct types of peptides, yet there remains significant room for development of new predictors. A Comprehensive review addresses the critical gap by providing a consolidated platform for the development of AI-driven peptide classification applications. This paper offers several key contributions, including presenting the biological foundations of 22 unique peptide types and categorizes them into four main classes: Regulatory, Therapeutic, Nutritional, and Delivery Peptides. It offers an in-depth overview of 47 databases that have been used to develop peptide classification benchmark datasets. It summarizes details of 288 benchmark datasets that are used in development of diverse types AI-driven peptide classification applications. It provides a detailed summary of 197 sequence representation learning methods and 94 classifiers that have been used to develop 230 distinct AI-driven peptide classification applications. Across 22 distinct types peptide classification tasks related to 288 benchmark datasets, it demonstrates performance values of 230 AI-driven peptide classification applications. It summarizes experimental settings and various evaluation measures that have been employed to assess the performance of AI-driven peptide classification applications. The primary focus of this manuscript is to consolidate scattered information into a single comprehensive platform. This resource will greatly assist researchers who are interested in developing new AI-driven peptide classification applications.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany.
| | - Tayyaba Asif
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| | - Faiza Mehmood
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Institute of Data Sciences, University of Engineering and Technology, Lahore, Pakistan
| | - Andreas Dengel
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| |
Collapse
|
2
|
Fernández-Díaz R, Cossio-Pérez R, Agoni C, Lam HT, Lopez V, Shields DC. AutoPeptideML: a study on how to build more trustworthy peptide bioactivity predictors. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae555. [PMID: 39292535 PMCID: PMC11438549 DOI: 10.1093/bioinformatics/btae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
MOTIVATION Automated machine learning (AutoML) solutions can bridge the gap between new computational advances and their real-world applications by enabling experimental scientists to build their own custom models. We examine different steps in the development life-cycle of peptide bioactivity binary predictors and identify key steps where automation cannot only result in a more accessible method, but also more robust and interpretable evaluation leading to more trustworthy models. RESULTS We present a new automated method for drawing negative peptides that achieves better balance between specificity and generalization than current alternatives. We study the effect of homology-based partitioning for generating the training and testing data subsets and demonstrate that model performance is overestimated when no such homology correction is used, which indicates that prior studies may have overestimated their performance when applied to new peptide sequences. We also conduct a systematic analysis of different protein language models as peptide representation methods and find that they can serve as better descriptors than a naive alternative, but that there is no significant difference across models with different sizes or algorithms. Finally, we demonstrate that an ensemble of optimized traditional machine learning algorithms can compete with more complex neural network models, while being more computationally efficient. We integrate these findings into AutoPeptideML, an easy-to-use AutoML tool to allow researchers without a computational background to build new predictive models for peptide bioactivity in a matter of minutes. AVAILABILITY AND IMPLEMENTATION Source code, documentation, and data are available at https://github.com/IBM/AutoPeptideML and a dedicated web-server at http://peptide.ucd.ie/AutoPeptideML. A static version of the software to ensure the reproduction of the results is available at https://zenodo.org/records/13363975.
Collapse
Affiliation(s)
- Raúl Fernández-Díaz
- IBM Research, Dublin, Dublin D15 HN66, Ireland
- School of Medicine, University College Dublin, Dublin D04 C1P1, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 C1P, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Ireland
| | - Rodrigo Cossio-Pérez
- School of Medicine, University College Dublin, Dublin D04 C1P1, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 C1P, Ireland
- Department of Science and Technology, National University of Quilmes, Bernal B1876, Provincia de Buenos Aires, Argentina
| | - Clement Agoni
- School of Medicine, University College Dublin, Dublin D04 C1P1, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 C1P, Ireland
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | | | - Denis C Shields
- School of Medicine, University College Dublin, Dublin D04 C1P1, Ireland
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 C1P, Ireland
| |
Collapse
|
3
|
Iwaniak A, Minkiewicz P, Darewicz M. Bioinformatics and bioactive peptides from foods: Do they work together? ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 108:35-111. [PMID: 38461003 DOI: 10.1016/bs.afnr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
We live in the Big Data Era which affects many aspects of science, including research on bioactive peptides derived from foods, which during the last few decades have been a focus of interest for scientists. These two issues, i.e., the development of computer technologies and progress in the discovery of novel peptides with health-beneficial properties, are closely interrelated. This Chapter presents the example applications of bioinformatics for studying biopeptides, focusing on main aspects of peptide analysis as the starting point, including: (i) the role of peptide databases; (ii) aspects of bioactivity prediction; (iii) simulation of peptide release from proteins. Bioinformatics can also be used for predicting other features of peptides, including ADMET, QSAR, structure, and taste. To answer the question asked "bioinformatics and bioactive peptides from foods: do they work together?", currently it is almost impossible to find examples of peptide research with no bioinformatics involved. However, theoretical predictions are not equivalent to experimental work and always require critical scrutiny. The aspects of compatibility of in silico and in vitro results are also summarized herein.
Collapse
Affiliation(s)
- Anna Iwaniak
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland.
| | - Piotr Minkiewicz
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Małgorzata Darewicz
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| |
Collapse
|
4
|
Arif M, Fang G, Fida H, Musleh S, Yu DJ, Alam T. iMRSAPred: Improved Prediction of Anti-MRSA Peptides Using Physicochemical and Pairwise Contact-Energy Properties of Amino Acids. ACS OMEGA 2024; 9:2874-2883. [PMID: 38250405 PMCID: PMC10795061 DOI: 10.1021/acsomega.3c08303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a growing concern for human lives worldwide. Anti-MRSA peptides act as potential antibiotic agents and play significant role to combat MRSA infection. Traditional laboratory-based methods for annotating Anti-MRSA peptides are although precise but quite challenging, costly, and time-consuming. Therefore, computational methods capable of identifying Anti-MRSA peptides accelerate the drug designing process for treating bacterial infections. In this study, we developed a novel sequence-based predictor "iMRSAPred" for screening Anti-MRSA peptides by incorporating energy estimation and physiochemical and sequential information. We successfully resolved the skewed imbalance phenomena by using synthetic minority oversampling technique plus Tomek link (SMOTETomek) algorithm. Furthermore, the Shapley additive explanation method was leveraged to analyze the impact of top-ranked features in the prediction task. We evaluated multiple machine learning algorithms, i.e., CatBoost, Cascade Deep Forest, Kernel and Tree Boosting, support vector machine, and HistGBoost classifiers by 10-fold cross-validation and independent testing. The proposed iMRSAPred method significantly improved the overall performance in terms of accuracy and Matthew's correlation coefficient (MCC) by 5.45 and 0.083%, respectively, on the training data set. On the independent data set, iMRSAPred improved accuracy and MCC by 3.98 and 0.055%, respectively. We believe that the proposed method would be useful in large-scale Anti-MRSA peptide prediction and provide insights into other bioactive peptides.
Collapse
Affiliation(s)
- Muhammad Arif
- College
of Science and Engineering, Hamad Bin Khalifa
University, Doha 34110, Qatar
| | - Ge Fang
- State
Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts Telecommunications
9 Wenyuan Road, Nanjing 210023, P. R. China
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bankok 10700, Thailand
| | - Huma Fida
- Department
of Microbiology, Abdul Wali Khan University, Mardan 23200, KPK, Pakistan
| | - Saleh Musleh
- College
of Science and Engineering, Hamad Bin Khalifa
University, Doha 34110, Qatar
| | - Dong-Jun Yu
- School
of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210023, China
| | - Tanvir Alam
- College
of Science and Engineering, Hamad Bin Khalifa
University, Doha 34110, Qatar
| |
Collapse
|