1
|
Eweis A, Ahmad MS, El Domany EB, Al-Zharani M, Mubarak M, E Eldin Z, GadelHak Y, Mahmoud R, Hozzein WN. Actinobacterium-Mediated Green Synthesis of CuO/Zn-Al LDH Nanocomposite Using Micromonospora sp. ISP-2 27: A Synergistic Study that Enhances Antimicrobial Activity. ACS OMEGA 2024; 9:34507-34529. [PMID: 39157139 PMCID: PMC11325407 DOI: 10.1021/acsomega.4c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Bacterial resistance to conventional antibiotics has created an urgent need to develop enhanced alternatives. Nanocomposites combined with promising antibacterial nanomaterials can show improved antimicrobial activity compared to that of their components. In this work, green synthesized CuO nanoparticles (NPs) supported on an anionic clay with a hydrotalcite-like structure such as Zn-Al layered double hydroxide (LDH) nanocomposite were investigated as antimicrobial agents. This nanocomposite was synthesized using Micromonospora sp. ISP-2 27 cell-free supernatant to form CuO NPs on the surface of previously synthesized LDH. The prepared samples were characterized using UV-Vis spectrophotometry, XRD, FTIR, Field emission scanning electron microscopy with EDX, zeta potential, and hydrodynamic particle size. UV-vis spectral analysis of the biosynthesized CuO NPs revealed a maximum peak at 300 nm, indicating their successful synthesis. The synthesized CuO NPs had a flower-like morphology with a size range of 43-78 nm, while the LDH support had a typical hexagonal layered structure. The zeta potentials of the CuO NPs, Zn-Al LDH, and CuO NPs/LDH nanocomposite were -21.4, 22.3, and 30.8 mV, respectively, while the average hydrodynamic sizes were 687, 735, and 528 nm, respectively. The antimicrobial activity of the produced samples was tested against several microbes. The results demonstrated that the nanocomposite displayed superior antimicrobial properties compared to those of its components. Among the microbes tested, Listeria monocytogenes ATCC 7644 was more sensitive (30 ± 0.34) to the biosynthesized nanocomposite than to CuO NPs (25 ± 0.05) and Zn-Al LDH (22 ± 0.011). In summary, the use of nanocomposites with superior antimicrobial properties has the potential to offer innovative solutions to the global challenge of antibiotic resistance by providing alternative treatments, reducing the reliance on traditional antibiotics, and contributing to the development of more effective and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Abdullah
A. Eweis
- Department
of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Maged S. Ahmad
- Department
of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ehab B. El Domany
- Biotechnology
and Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohammed Al-Zharani
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Mubarak
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Zienab E Eldin
- Department
of Materials Science and Nanotechnology, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Yasser GadelHak
- Department
of Materials Science and Nanotechnology, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rehab Mahmoud
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| | - Wael N. Hozzein
- Department
of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
2
|
Mahmoud R, Kotb NM, GadelHak Y, El-Ela FIA, Shehata AZ, Othman SI, Allam AA, Rudayni HA, Zaher A. Investigation of ternary Zn-Co-Fe layered double hydroxide as a multifunctional 2D layered adsorbent for moxifloxacin and antifungal disinfection. Sci Rep 2024; 14:806. [PMID: 38191628 PMCID: PMC10774404 DOI: 10.1038/s41598-023-48382-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024] Open
Abstract
Layered double hydroxides have recently gained wide interest as promising multifunctional nanomaterials. In this work, a multifunctional ternary Zn-Co-Fe LDH was prepared and characterized using XRD, FTIR, BET, TEM, SEM, and EDX. This LDH showed a typical XRD pattern with a crystallite size of 3.52 nm and a BET surface area of 155.9 m2/g. This LDH was investigated, for the first time, as an adsorbent for moxifloxacin, a common fluoroquinolones antibiotic, showing a maximum removal efficiency and equilibrium time of 217.81 mg/g and 60 min, respectively. Its antifungal activity, for the first time, was investigated against Penicillium notatum, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, and Mucor fungi at various concentrations (1000-1.95 µg/mL). This LDH was found to be effective against a variety of fungal strains, particularly Penicillium and Mucor species and showed zones of inhibition of 19.3 and 21.6 mm for Penicillium and Mucor, respectively, with an inhibition of 85% for Penicillium species and 68.3% for Mucormycosis. The highest antifungal efficacy results were obtained at very low MIC concentrations (33.3 and 62 µg/ml) against Penicillium and Mucor, respectively. The results of this study suggest a promising multifunctional potential of this LDH for water and wastewater treatment and disinfection applications.
Collapse
Affiliation(s)
- Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Nada M Kotb
- Hydrogeology and Environment Department, Faculty of Earth Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ayman Z Shehata
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. BOX 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
| | - Amal Zaher
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Mohamed H, Mahmoud R, Abdelwahab A, Farghali AA, Abo El-Ela FI, Allah AE. Multifunctional ternary ZnMgFe LDH as an efficient adsorbent for ceftriaxone sodium and antimicrobial agent: sustainability of adsorption waste as a catalyst for methanol electro-oxidation. RSC Adv 2023; 13:26069-26088. [PMID: 37664207 PMCID: PMC10472347 DOI: 10.1039/d3ra03426g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
In order to achieve sustainable benefits for the adsorption of wastewater pollutants, spent adsorbents need to be recycled and/or valorized. This work studied a two-dimensional (2D) ZnMgFe layered double hydroxide (LDH) for ceftriaxone sodium (CTX) adsorption. This LDH showed a crystallite size of 9.8 nm, a BET surface area of 367.59 m2 g-1, and a micro-sphere-like morphology. The factors investigated in this study were the adsorbent dose, initial concentration, initial pH, and contact time. ZnMgFe LDH showed 99% removal of CTX with a maximum adsorption capacity of 241.75 mg g-1 at pH = 5. The Dubinin-Radushkevich model was found to be the most adequate isotherm model. The spent adsorbent (ZnMgFe LDH/CTX) was reused as an electro-oxidation catalyst for direct methanol fuel cells. ZnMgFe LDH/CTX showed almost a 10-fold increase in electrochemical activity for all scan rates compared to bare ZnMgFe LDH in 1 M KOH. As methanol concentration increases, the maximum current density generated by both the ZnMgFe LDH and ZnMgFe LDH/CTX samples increases. Moreover, the maximum current density for ZnMgFe LDH/CTX was 47 mA cm-2 at a methanol concentration of 3 M. Both samples possess reasonable stability over a 3600 S time window with no significant deterioration of electrochemical performance. Moreover, the antimicrobial studies showed that ZnMgFe LDH had a significant antifungal (especially Aspergillus, Mucor, and Penicillium species) and antibacterial (with greater action against Gram-positive than negative) impact on several severe infectious diseases, including Aspergillus. This study paves the way for the reuse and valorization of selected adsorbents toward circular economy requirements.
Collapse
Affiliation(s)
- Hala Mohamed
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University 62511 Egypt
| | - Abdalla Abdelwahab
- Faculty of Science, Galala University Sokhna 43511 Suez Egypt
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Ahmed A Farghali
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University 62511 Egypt
| | - Abeer Enaiet Allah
- Chemistry Department, Faculty of Science, Beni-Suef University 62511 Egypt
| |
Collapse
|
4
|
Belal A, Mahmoud R, Mohamed EE, Farghali A, Abo El-Ela FI, Gamal A, Halfaya FM, Khaled E, Farahat AA, Hassan AHE, Ghoneim MM, Taha M, Zaky MY. A Novel Hydroxyapatite/Vitamin B 12 Nanoformula for Treatment of Bone Damage: Preparation, Characterization, and Anti-Arthritic, Anti-Inflammatory, and Antioxidant Activities in Chemically Induced Arthritic Rats. Pharmaceuticals (Basel) 2023; 16:ph16040551. [PMID: 37111308 PMCID: PMC10143295 DOI: 10.3390/ph16040551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
The usage of nanomaterials for rheumatoid arthritis (RA) treatment can improve bioavailability and enable selective targeting. The current study prepares and evaluates the in vivo biological effects of a novel hydroxyapatite/vitamin B12 nanoformula in Complete Freund's adjuvant-induced arthritis in rats. The synthesized nanoformula was characterized using XRD, FTIR, BET analysis, HERTEM, SEM, particle size, and zeta potential. We synthesized pure HAP NPs with 71.01% loading weight percentages of Vit B12 and 49 mg/g loading capacity. Loading of vitamin B12 on hydroxyapatite was modeled by Monte Carlo simulation. Anti-arthritic, anti-inflammatory, and antioxidant effects of the prepared nanoformula were assessed. Treated arthritic rats showed lower levels of RF and CRP, IL-1β, TNF-α, IL-17, and ADAMTS-5, but higher IL-4 and TIMP-3 levels. In addition, the prepared nanoformula increased GSH content and GST antioxidant activity while decreasing LPO levels. Furthermore, it reduced the expression of TGF-β mRNA. Histopathological examinations revealed an improvement in joint injuries through the reduction of inflammatory cell infiltration, cartilage deterioration, and bone damage caused by Complete Freund's adjuvant. These findings indicate that the anti-arthritic, antioxidant, and anti-inflammatory properties of the prepared nanoformula could be useful for the development of new anti-arthritic treatments.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Eman E Mohamed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma Mohamed Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Esraa Khaled
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdelbasset A Farahat
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Department of Oncology and Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|