1
|
Ma Y, Zhou N, Xia Z, Shen Y, Yang T, Luo X, Li Y. Surface-enhanced Raman spectroscopy facilitates the detection of multiple metabolic modulators. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126121. [PMID: 40158343 DOI: 10.1016/j.saa.2025.126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Metabolic regulators can improve the athletic ability of athletes by regulating body metabolism, but it is not conducive to fair competition, so it is listed as a prohibited substance. At the same time, the State General Administration of Sport ordered major event organizers to test food for food-borne stimulants. Surface-enhanced Raman scattering (SERS) spectroscopy has been widely used because of its excellent sensitivity and strong spectral characteristics. Based on the available information, SERS spectrum data of metabolic regulators in food-related fields were lacking. In this study, we used gold dodecahedron nanoparticles as SERS active substrate and successfully captured the characteristic peaks of 6 metabolic regulatory factors. A low cost and stable SERS detection technique for detecting trimetazidine in milk samples with good recovery rate was proposed. Therefore, this method can not only protect the food safety of large-scale sports events, but also have broad application prospects in the food field.
Collapse
Affiliation(s)
- Yueyue Ma
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Na Zhou
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Zhichao Xia
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Yushi Shen
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Tao Yang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, PR China.
| | - Yuanyuan Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
2
|
Ajam F, Khourshidi A, Rabieian M, Taghavijeloudar M. Per-and polyfluoroalkyl degradation in a hybrid dielectric barrier discharge plasma and electrooxidation system through involving more reactive species by air and water circulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137287. [PMID: 39854989 DOI: 10.1016/j.jhazmat.2025.137287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The presence of PFAS in water matrices has become a global environmental issue in the last half-century. Dielectric barrier discharge (DBD) and electrooxidation (EO) showed potential for PFAS degradation but have yet to find practical application due to relatively high energy consumption. In this study, a hybrid DBD-EO system for efficient degradation of PFAS was developed by involving more reactive oxygen, sulfate radicals (SO4•-) and nitrogen species (RONS). The results showed that using the hybrid DBD-EO system under optimal conditions (applied voltage = 6 kV and current density = 7.5 mA/cm2) could increase PFOA degradation efficiency from 65.0 % (DBD) and 62.5 % (EO) to 89.14 %. While the EE/O decreased from 67.0 kWh/m3 (DBD) and 47.82 kWh/m3 (EO) to 21.61 kWh/m3. In addition, the effect of operational parameters and water matrices revealed that the hybrid DBD-EO system had high potential for PFOA removal from water under various conditions. According to the EPR and DFT calculation results, integration of reactive species in EO (SO4•-, •OH, O2•-) and ONOOH) and DBD (•OH, O2•-, NO2•-, 1O2 and ONOOH) processes in the DBD-EO system led to efficient degradation of PFOA through a mechanism of decarboxylation/defluorination cycle. Our findings suggested the combination of DBD and EO is a promising approach for complete degradation of PFAS from water with low energy consumption and minimal environmental side effects.
Collapse
Affiliation(s)
- Fatemeh Ajam
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol 47148-7313, Iran
| | - Amirhossein Khourshidi
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol 47148-7313, Iran
| | - Masoud Rabieian
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol 47148-7313, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 151-744, South Korea.
| |
Collapse
|
3
|
Huang C, Zhang Y, Zhang Q, He D, Dong S, Xiao X. Rapid detection of perfluorooctanoic acid by surface enhanced Raman spectroscopy and deep learning. Talanta 2024; 280:126693. [PMID: 39167934 DOI: 10.1016/j.talanta.2024.126693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Perfluorooctanoic acid (PFOA) has received increasing concerns in recent years due to its wide distribution and potential toxicity. Existing detection techniques of PFOA require complex pre-treatment, therefore often taking several hours. Here, we developed a rapid PFOA detection mode to detect approximate concentrations of PFOA (ranging from 10-15 to 10-3 mol/L) in deionized water, and detecting one sample takes only 20 min. The detection mode was achieved using a deep learning model trained by a large surface enhanced Raman spectra dataset, based on the agglomeration of PFOA with crystal violet. In addition, transfer learning approach was used to fine tune the model, the fine-tuned model was generalizable across water samples with different impurities and environments to determine whether meet the safety standards of PFOA, the accuracy was 96.25 % and 94.67 % for tap water and lake water samples, respectively. The mechanism and specificity of the detection mode were further confirmed by molecular dynamics simulation. Our work provides a promising solution for PFOA detection, especially in the context of the increasingly widespread application of PFOA.
Collapse
Affiliation(s)
- Chaoning Huang
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China
| | - Ying Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qi Zhang
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China
| | - Dong He
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China
| | - Shilian Dong
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China.
| | - Xiangheng Xiao
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China; Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
4
|
Huang C, Li H, Zhang X. Direct Writing of SERS Substrates Using Femtosecond Laser Pulses. ACS OMEGA 2024; 9:37188-37196. [PMID: 39246463 PMCID: PMC11375716 DOI: 10.1021/acsomega.4c04588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
Achieving a high-density, repeatable, and uniform distribution of "hotspots" across the entire surface-enhanced Raman scattering (SERS) substrate is a current challenge in facilitating the efficient preparation of large-area SERS substrates. In this study, we aim to produce homogeneous surface-enhanced Raman scattering (SERS) substrates based on the strong interaction between femtosecond laser pulses and a thin film of colloidal gold nanoparticles (AuNPs). The SERS substrate we obtained consists of irregularly shaped and sharp-edged gold nanoparticle aggregates with specially extruding features; meanwhile, a large number of three-dimensional AuNP stacks are produced. The advantages of such configurations lie in the production of a high density of hotspots, which can significantly improve the SERS performance. When the laser fluence is 5.6 mJ/cm2, the substrate exhibits the best SERS enhancement effect, and a strong SERS signal can still be observed when testing the concentration of R6G at 10-8 mol/L. The enhancement factor of such SERS substrates prepared using femtosecond laser direct writing is increased by 3 orders of magnitude compared to the conventional furnace annealing process. Furthermore, the relative standard deviation for the intensities of the SERS signals was measured to be 5.1% over an area of 50 × 50 μm2, indicating a highly homogeneous SERS performance and excellent potential for practical applications.
Collapse
Affiliation(s)
- Cuiying Huang
- School of Arts and Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Hang Li
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Xinping Zhang
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Lada ZG, Mathioudakis GN, Soto Beobide A, Andrikopoulos KS, Voyiatzis GA. Generic method for the detection of short & long chain PFAS extended to the lowest concentration levels of SERS capability. CHEMOSPHERE 2024; 363:142916. [PMID: 39043274 DOI: 10.1016/j.chemosphere.2024.142916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
The detection of the highly toxic per- and polyfluoroalkyl substances, PFAS, constitutes a challenging task in terms of developing a generic method that could be rapid and applicable simultaneously to both long and short-chain PFAS at ppt concentration level. In the present study, the method introduced by the USA Environmental Protection Agency, EPA, to detect surfactants, using methylene blue, MB, which is identified an ideal candidate for PFAS-MB ion pairing, is extended at the lowest concentration range by a simple additional step that involves the dissociation of the ion pairs in water. In this work, Surface Enhanced Raman Scattering, SERS, is applied via Ag nanocolloidal suspensions to probe MB and indirectly either/or both short-chain (perfluorobutyric acid, PFBA) and long-chain (perfluoloctanoic acid, PFOA) PFAS downt to 5 ppt. This method, which can be further optimized to sub-ppt level via a custom-made SERS-PFAS dedicated Raman system, offers the possibility to be applied to either specific PFAS (both short and long-chain) in a targeted analysis or to total PFAS in a non-targeted analysis at very low detection limits, following any type of MB detection method in aqueous solutions and obviously with any type of SERS substrate.
Collapse
Affiliation(s)
- Zoi G Lada
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences, (FORTH/ICE-HT), Stadiou Str. Platani, 265 04, Patras, Greece
| | - Georgios N Mathioudakis
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences, (FORTH/ICE-HT), Stadiou Str. Platani, 265 04, Patras, Greece
| | - Amaia Soto Beobide
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences, (FORTH/ICE-HT), Stadiou Str. Platani, 265 04, Patras, Greece
| | - Konstantinos S Andrikopoulos
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences, (FORTH/ICE-HT), Stadiou Str. Platani, 265 04, Patras, Greece; Department of Physics, University of Patras, GR-26504, Patras, Greece
| | - George A Voyiatzis
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences, (FORTH/ICE-HT), Stadiou Str. Platani, 265 04, Patras, Greece.
| |
Collapse
|
6
|
Kukralova K, Miliutina E, Guselnikova O, Burtsev V, Hrbek T, Svorcik V, Lyutakov O. Dual-mode electrochemical and SERS detection of PFAS using functional porous substrate. CHEMOSPHERE 2024; 364:143149. [PMID: 39182732 DOI: 10.1016/j.chemosphere.2024.143149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Human activity is the cause of the continuous and gradual grooving of environmental contaminants, where some released toxic and dangerous compounds cannot be degraded under natural conditions, resulting in a serious safety issue. Among them are the widely occurring water-soluble perfluoroalkyl and polyfluoroalkyl substances (PFAS), sometimes called "forever chemicals" because of the impossibility of their natural degradation. Hence, a reliable, expressive, and simple method should be developed to monitor and eliminate the risks associated with these compounds. In this study, we propose a simple, express, and portable detection method for water-soluble fluoro-alkyl compounds (PFOA and GenX) using mutually complementary methods: electrochemical impedance spectroscopy (EIS) and surface-enhanced Raman spectroscopy (SERS). To implement our method, we developed special substrates based on porous silicon with a top-deposited plasmon-active Au layer by subsequently grafting -C6H4-NH2 chemical moieties to provide surface affinity toward negatively charged water-soluble PFAS. Subsequent EIS utilization allows us to perform semiquantitative detection of PFOA and GenX up to 10-10 M concentration because surface entrapping of PFAS leads to a significant increase in the electrode-electrolyte charge-transfer resistance. However, distinguishing by EIS whether even PFAS were entrapped was impossible, and thus the substrates were subsequently subjected to SERS measurements (allowed by surface plasmon activity due to the presence of a porous Au layer), clearly indicating the appearance of characteristic C-F vibration bands.
Collapse
Affiliation(s)
- Karolina Kukralova
- Department of Solid State Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic.
| | - Elena Miliutina
- Department of Solid State Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic; Materials Centre, Faculty of Science, J. E. Purkyně University, Pasteurova 3544/1, 400 96, Ústí nad Labem, Czech Republic.
| | - Olga Guselnikova
- Centre of Electrochemical and surface technology, Viktor Kaplan Straße 2, Wiener Neustadt, 2700, Austria.
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic.
| | - Tomas Hrbek
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic.
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic.
| |
Collapse
|
7
|
Hafeez S, Khanam A, Cao H, Chaplin BP, Xu W. Novel Conductive and Redox-Active Molecularly Imprinted Polymer for Direct Quantification of Perfluorooctanoic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:871-877. [PMID: 39156924 PMCID: PMC11325644 DOI: 10.1021/acs.estlett.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
This study developed a novel molecularly imprinted polymer (MIP) that is both conductive and redox-active for directly quantifying perfluorooctanoic acid (PFOA) electrochemically. We synthesized the monomer 3,4-ethylenedioxythiophene-2,2,6,6-tetramethylpiperidinyloxy (EDOT-TEMPO) for electropolymerization on a glassy carbon electrode using PFOA as a template, which was abbreviated as PEDOT-TEMPO-MIP. The redox-active MIP eliminated the need for external redox probes. When exposed to PFOA, both anodic and cathodic peaks of MIP showed a decreased current density. This observation can be explained by the formation of a charge-assisted hydrogen bond between the anionic PFOA and MIP's redox-active moieties (TEMPO) that hinder the conversion between the oxidized and reduced forms of TEMPO. The extent of the current density decrease showed excellent linearity with PFOA concentrations, with a method detection limit of 0.28 ng·L-1. PEDOT-TEMPO-MIP also exhibited high selectivity toward PFOA against other per- and polyfluoroalkyl substances (PFAS) at environmentally relevant concentrations. Our results suggest electropolymerization of MIPs was highly reproducible, with a relative standard deviation of 5.1% among three separate MIP electrodes. PEDOT-TEMPO-MIP can also be repeatedly used with good stability and reproducibility for PFOA detection. This study provides an innovative platform for rapid PFAS quantification using redox-active MIPs, laying the groundwork for developing compact PFAS sensors.
Collapse
Affiliation(s)
- Sumbul Hafeez
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Aysha Khanam
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Han Cao
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Brian P. Chaplin
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., 14, Chicago, Illinois 60607, United States
| | - Wenqing Xu
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
8
|
Chen Y, Yang Y, Cui J, Zhang H, Zhao Y. Decoding PFAS contamination via Raman spectroscopy: A combined DFT and machine learning investigation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133260. [PMID: 38128230 DOI: 10.1016/j.jhazmat.2023.133260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
In this study, density function theory (DFT) is employed to compute Raman spectra of 40 important Perfluoroalkyl substances (PFASs) as listed in Draft Method 1633 by U.S. Environmental Protection Agent. A systematic comparison of their spectral features is conducted, and Raman peaks and vibrational modes are identified. The Raman spectral regions for the main chemical bonds (such as C-C, CF2 & CF3, O-H) and main functional groups (such as -COOH, -SO3H, -C2H4SO3H, and -SO2NH2) are identified and compared. The impacts of branching location in isomer, molecular chain length, and functional groups on the Raman spectra are analyzed. Particularly, the isomers of PFOA alter the peak locations slightly in wavenumber regions of 200 - 800 and 1000 - 1400 cm-1, while for PFOS, spectral features in the 230 - 360, 470 - 680, and 1030 - 1290 cm-1 regions exhibit significant difference. The carbon chain length can significantly increase the number of Raman peaks, while different functional groups give significantly different peak locations. To facilitate differentiation, a spectral database is constructed by introducing controlled noise into the DFT-computed Raman spectra. Subsequently, two chemometric techniques, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), are applied to effectively distinguish among these spectra, both for 40 PFAS compounds and the isomers. The findings demonstrate the promising potential of combining Raman spectroscopy with advanced spectral analysis methods to discriminate between distinct PFAS compounds, holding significant implications for improved PFAS detection and characterization methodologies.
Collapse
Affiliation(s)
- Yangxiu Chen
- College of Physics, Sichuan University, Chengdu, China
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jiaheng Cui
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Hong Zhang
- College of Physics, Sichuan University, Chengdu, China.
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Zhang M, Zhao Y, Bui B, Tang L, Xue J, Chen M, Chen W. The Latest Sensor Detection Methods for per- and Polyfluoroalkyl Substances. Crit Rev Anal Chem 2024; 55:542-558. [PMID: 38234139 DOI: 10.1080/10408347.2023.2299233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have emerged as a prominent environmental pollutant in recent years, primarily due to their tendency to accumulate and magnify in both the environment and living organisms. The entry of PFASs into the environment can have detrimental effects on human health. Hence, it is crucial to actively monitor and detect the presence of PFASs. The current standard detection method of PFAS is the combination of chromatography and mass spectrometry. However, this requires expensive instruments, extra sample pretreatment steps, complicated operation and long analysis time. As a result, new methods that do not rely on chromatography and mass spectrometry have been developed and applied. These alternative methods mainly include optical and electrochemical sensor methods, which offer great potential in terms of real-time field detection, instrument miniaturization, shorter analysis time, and reduced detection cost. This review provides a summary of recent advancements in PFAS detection sensors. We categorize and explain the principles and mechanisms of these sensors, and compare their limits of detection and sensitivity. Finally, we discuss the future challenges and improvements needed for PFAS sensors, such as field application, commercialization, and other related issues.
Collapse
Affiliation(s)
- Mingyu Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Yanan Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Brian Bui
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
| | - Liming Tang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
- School of CHIPS, Xi'an Jiaotong-Loverpool University, Suzhou, China
| |
Collapse
|
10
|
Al Shboul A, Ketabi M, Skaf D, Nyayachavadi A, Lai Fak Yu T, Rautureau T, Rondeau-Gagné S, Izquierdo R. Graphene Inks Printed by Aerosol Jet for Sensing Applications: The Role of Dispersant on the Inks' Formulation and Performance. SENSORS (BASEL, SWITZERLAND) 2023; 23:7151. [PMID: 37631688 PMCID: PMC10458541 DOI: 10.3390/s23167151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
This study presents graphene inks produced through the liquid-phase exfoliation of graphene flakes in water using optimized concentrations of dispersants (gelatin, triton X-100, and tween-20). The study explores and compares the effectiveness of the three different dispersants in creating stable and conductive inks. These inks can be printed onto polyethylene terephthalate (PET) substrates using an aerosol jet printer. The investigation aims to identify the most suitable dispersant to formulate a high-quality graphene ink for potential applications in printed electronics, particularly in developing chemiresistive sensors for IoT applications. Our findings indicate that triton X-100 is the most effective dispersant for formulating graphene ink (GTr), which demonstrated electrical conductivity (4.5 S·cm-1), a high nanofiller concentration of graphene flakes (12.2%) with a size smaller than 200 nm (<200 nm), a low dispersant-to-graphene ratio (5%), good quality as measured by Raman spectroscopy (ID/IG ≈ 0.27), and good wettability (θ ≈ 42°) over PET. The GTr's ecological benefits, combined with its excellent printability and good conductivity, make it an ideal candidate for manufacturing chemiresistive sensors that can be used for Internet of Things (IoT) healthcare and environmental applications.
Collapse
Affiliation(s)
- Ahmad Al Shboul
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada (T.R.)
| | - Mohsen Ketabi
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada (T.R.)
| | - Daniella Skaf
- Department of Chemistry and Biochemistry, Advanced Materials Centre of Research, University of Windsor, Windsor, ON N9B 3P4, Canada (A.N.); (S.R.-G.)
| | - Audithya Nyayachavadi
- Department of Chemistry and Biochemistry, Advanced Materials Centre of Research, University of Windsor, Windsor, ON N9B 3P4, Canada (A.N.); (S.R.-G.)
| | - Thierry Lai Fak Yu
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada (T.R.)
| | - Tom Rautureau
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada (T.R.)
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, Advanced Materials Centre of Research, University of Windsor, Windsor, ON N9B 3P4, Canada (A.N.); (S.R.-G.)
| | - Ricardo Izquierdo
- Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada (T.R.)
| |
Collapse
|
11
|
Giordano AN, Rao R. Beyond the Visible: A Review of Ultraviolet Surface-Enhanced Raman Scattering Substrate Compositions, Morphologies, and Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2177. [PMID: 37570495 PMCID: PMC10421355 DOI: 10.3390/nano13152177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
The first observation of ultraviolet surface-enhanced Raman scattering (UV-SERS) was 20 years ago, yet the field has seen a slower development pace than its visible and near-infrared counterparts. UV excitation for SERS offers many potential advantages. These advantages include increased scattering intensity, higher spatial resolution, resonance Raman enhancement from organic, biological, and semiconductor analytes, probing UV photoluminescence, and mitigating visible photoluminescence from analytes or substrates. One of the main challenges is the lack of readily accessible, effective, and reproducible UV-SERS substrates, with few commercial sources available. In this review, we evaluate the reported UV-SERS substrates in terms of their elemental composition, substrate morphology, and performance. We assess the best-performing substrates with regard to their enhancement factors and limits of detection in both the ultraviolet and deep ultraviolet regions. Even though aluminum nanostructures were the most reported and best-performing substrates, we also highlighted some unique UV-SERS composition and morphology substrate combinations. We address the challenges and potential opportunities in the field of UV-SERS, especially in relation to the development of commercially available, cost-effective substrates. Lastly, we discuss potential application areas for UV-SERS, including cost-effective detection of environmentally and militarily relevant analytes, in situ and operando experimentation, defect engineering, development of materials for extreme environments, and biosensing.
Collapse
Affiliation(s)
- Andrea N. Giordano
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA
- National Research Council, Washington, DC 20001, USA
| | - Rahul Rao
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA
| |
Collapse
|
12
|
Park H, Park J, Kim W, Kim W, Park J. Ultra-sensitive SERS detection of perfluorooctanoic acid based on self-assembled p-phenylenediamine nanoparticle complex. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131384. [PMID: 37084515 DOI: 10.1016/j.jhazmat.2023.131384] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
PFOA is a representative perfluorinated compound that is used as a surfactant in various industrial fields. However, because PFOA has severe side effects due to its strong toxicity, such as carcinogenesis, liver damage, and immune system damage, it is crucial to enable PFOA detection with high sensitivity. Herein, we developed a perfluorooctanoic acid (PFOA) surface-enhanced Raman scattering (SERS) sensor using self-assembled p-phenylenediamine (SAp-PD) nanoparticles and an Ag SERS substrate. For the ultra-sensitive detection of PFOA, we synthesized and optimized SAp-PD, which shows a decrease in SERS intensities when reacting with PFOA. Using the Ag nanograss SERS substrate, the change in intensity that resulted from the SAp-PD and PFOA reaction was amplified. Consequently, we detected the 1.28 pM (detection limit) of PFOA in distilled water. Moreover, PFOA molecules were successfully detected in samples of the PFOA-coated frying pan and rice extraction at concentrations up to 1.69 nM and 10.3 μM, respectively.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, the Republic of Korea
| | - Joohyung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, the Republic of Korea
| | - Woochang Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, the Republic of Korea
| | - Woong Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, the Republic of Korea.
| | - Jinsung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, the Republic of Korea.
| |
Collapse
|