1
|
Hu RE, Yu CH, Ng IS. GRACE: Generative Redesign in Artificial Computational Enzymology. ACS Synth Biol 2024; 13:4154-4164. [PMID: 39513550 DOI: 10.1021/acssynbio.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Designing de novo enzymes is complex and challenging, especially to maintain the activity. This research focused on motif design to identify the crucial domain in the enzyme and uncovered the protein structure by molecular docking. Therefore, we developed a Generative Redesign in Artificial Computational Enzymology (GRACE), which is an automated workflow for reformation and creation of the de novo enzymes for the first time. GRACE integrated RFdiffusion for structure generation, ProteinMPNN for sequence interpretation, CLEAN for enzyme classification, and followed by solubility analysis and molecular dynamic simulation. As a result, we selected two gene sequences associated with carbonic anhydrase from among 10,000 protein candidates. Experimental validation confirmed that these two novel enzymes, i.e., dCA12_2 and dCA23_1, exhibited favorable solubility, promising substrate-active site interactions, and achieved activity of 400 WAU/mL. This workflow has the potential to greatly streamline experimental efforts in enzyme engineering and unlock new avenues for rational protein design.
Collapse
Affiliation(s)
- Ruei-En Hu
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chi-Hua Yu
- Department of Engineering Science, National Cheng Kung University, Tainan City 701, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| |
Collapse
|
2
|
Jordan JS, Lee KJ, Williams ER. Overcoming aggregation with laser heated nanoelectrospray mass spectrometry: thermal stability and pathways for loss of bicarbonate from carbonic anhydrase II. Analyst 2024; 149:2281-2290. [PMID: 38497240 DOI: 10.1039/d4an00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Variable temperature electrospray mass spectrometry is useful for multiplexed measurements of the thermal stabilities of biomolecules, but the ionization process can be disrupted by aggregation-prone proteins/complexes that have irreversible unfolding transitions. Resistively heating solutions containing a mixture of bovine carbonic anhydrase II (BCAII), a CO2 fixing enzyme involved in many biochemical pathways, and cytochrome c leads to complete loss of carbonic anhydrase signal and a significant reduction in cytochrome c signal above ∼72 °C due to aggregation. In contrast, when the tips of borosilicate glass nanoelectrospray emitters are heated with a laser, complete thermal denaturation curves for both proteins are obtained in <1 minute. The simultaneous measurements of the melting temperature of BCAII and BCAII bound to bicarbonate reveal that the bicarbonate stabilizes the folded form of this protein by ∼6.4 °C. Moreover, the temperature dependences of different bicarbonate loss pathways are obtained. Although protein analytes are directly heated by the laser for only 140 ms, heat conduction further up the emitter leads to a total analyte heating time of ∼41 s. Pulsed laser heating experiments could reduce this time to ∼0.5 s for protein aggregation that occurs on a faster time scale. Laser heating provides a powerful method for studying the detailed mechanisms of cofactor/ligand loss with increasing temperature and promises a new tool for studying the effect of ligands, drugs, growth conditions, buffer additives, or other treatments on the stabilities of aggregation-prone biomolecules.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| |
Collapse
|
3
|
Sharma A, Leverant CJ, Richards D, Beamis CP, Spoerke ED, Percival SJ, Rempe SB, Vanegas JM. Transport and Energetics of Carbon Dioxide in Ionic Liquids at Aqueous Interfaces. J Phys Chem B 2023. [PMID: 38048268 DOI: 10.1021/acs.jpcb.3c05946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
A major hurdle in utilizing carbon dioxide (CO2) lies in separating it from industrial flue gas mixtures and finding suitable storage methods that enable its application in various industries. To address this issue, we utilized a combination of molecular dynamics simulations and experiments to investigate the behavior of CO2 in common room-temperature ionic liquids (RTIL) when in contact with aqueous interfaces. Our investigation of RTILs, [EMIM][TFSI] and [OMIM][TFSI], and their interaction with a pure water layer mimics the environment of a previously developed ultrathin enzymatic liquid membrane for CO2 separation. We analyzed diffusion constants and viscosity, which reveals that CO2 molecules exhibit faster mobility within the selected ILs compared to what would be predicted solely based on the viscosity of the liquids using the standard Einstein-Stokes relation. Moreover, we calculated the free energy of translocation for various species across the aqueous-IL interface, including CO2 and HCO3-. Free energy profiles demonstrate that CO2 exhibits a more favorable partitioning behavior in the RTILs compared to that in pure water, while a significant barrier hinders the movement of HCO3- from the aqueous layer. Experimental measurement of the CO2 transport in the RTILs corroborates the model. These findings strongly suggest that hydrophobic RTILs could serve as a promising option for selectively transporting CO2 from aqueous media and concentrating it as a preliminary step toward storage.
Collapse
Affiliation(s)
- Arjun Sharma
- Department of Physics, University of Vermont, Burlington, Vermont 05405, United States
| | - Calen J Leverant
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Danielle Richards
- Electronic, Optical, and Nano Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Erik D Spoerke
- Electronic, Optical, and Nano Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Stephen J Percival
- Electronic, Optical, and Nano Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Juan M Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|