1
|
Adeiga O, Pillay K. Adsorptive Removal of Cd(II) Ions from Water by a Cheap Lignocellulosic Adsorbent and Its Reuse as a Catalyst for the Decontamination of Sulfamethoxazole. ACS OMEGA 2024; 9:38348-38358. [PMID: 39310202 PMCID: PMC11411686 DOI: 10.1021/acsomega.3c08761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 09/25/2024]
Abstract
The work reports the removal of cadmium from water by applying an efficient low-cost lignocellulosic adsorbent, rooibos tea waste. The cadmium-loaded rooibos tea waste was used for the photocatalytic abatement of sulfamethoxazole to cater to the setback of secondary pollution mostly associated with the adsorption technique. The rooibos tea waste adsorbent displayed a high removal efficiency of about 90.63% for 10 mg/L Cd(II) ions at 45 °C, 180 min agitation time, pH 7, and a dosage of 500 mg. The process of Cd(II) adsorption was endothermic and spontaneous. Also, the spent adsorbent was found to be efficient toward the photocatalytic breakdown of 10 mg/L sulfamethoxazole with a degradation efficiency of 69% after 150 min. In addition, the extent of mineralization of the sulfamethoxazole by the spent adsorbent as obtained from the total organic carbon data was found to be 53%. Therefore, based on the results obtained from this work, rooibos tea waste lends itself as a cheap, eco-friendly, easily sourced, and viable adsorbent for the removal of toxic ions like Cd(II). Also, the successful reuse of the spent adsorbent is a promising approach to cater to the major setback of secondary pollution associated with adsorption technology.
Collapse
Affiliation(s)
- Opeoluwa
I. Adeiga
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Kriveshini Pillay
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
2
|
Parasnis M, Deng E, Yuan M, Lin H, Kordas K, Paltseva A, Frimpong Boamah E, Judelsohn A, Nalam PC. Heavy Metal Remediation by Dry Mycelium Membranes: Approaches to Sustainable Lead Remediation in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6317-6329. [PMID: 38483835 PMCID: PMC10977094 DOI: 10.1021/acs.langmuir.3c03811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Lead contamination poses significant and lasting health risks, particularly in children. This study explores the efficacy of dried mycelium membranes, distinct from live fungal biomass, for the remediation of lead (Pb(II)) in water. Dried mycelium offers unique advantages, including environmental resilience, ease of handling, biodegradability, and mechanical reliability. The study explores Pb(II) removal mechanisms through sorption and mineralization by dried mycelium hyphae in aqueous solutions. The sorption isotherm studies reveal a high Pb(II) removal efficiency, exceeding 95% for concentrations below 1000 ppm and ∼63% above 1500 ppm, primarily driven by electrostatic interactions. The measured infrared peak shifts and the pseudo-second-order kinetics for sorption suggests a correlation between sorption capacity and the density of interacting functional groups. The study also explores novel surface functionalization of the mycelium network with phosphate to enhance Pb(II) removal, which enables remediation efficiencies >95% for concentrations above 1500 ppm. Scanning electron microscopy images show a pH-dependent formation of Pb-based crystals uniformly deposited throughout the entire mycelium network. Continuous cross-flow filtration tests employing a dried mycelium membrane demonstrate its efficacy as a microporous membrane for Pb(II) removal, reaching remediation efficiency of 85-90% at the highest Pb(II) concentrations. These findings suggest that dried mycelium membranes can be a viable alternative to synthetic membranes in heavy metal remediation, with potential environmental and water treatment applications.
Collapse
Affiliation(s)
- Mruganka
Sandip Parasnis
- Department
of Materials Design and Innovation, University
at Buffalo, Buffalo, New York 14203, United States
| | - Erda Deng
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Mengqi Yuan
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Haiqing Lin
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Katarzyna Kordas
- Department
of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York 14214, United States
| | - Anna Paltseva
- School
of Geosciences, University of Louisiana,104 East University Avenue, Lafayette, Louisiana 70504, United States
| | - Emmanuel Frimpong Boamah
- Department
of Urban and Regional Planning, University
at Buffalo, Buffalo, New York 14214, United States
| | - Alexandra Judelsohn
- Department
of Urban and Regional Planning, University
at Buffalo, Buffalo, New York 14214, United States
| | - Prathima C. Nalam
- Department
of Materials Design and Innovation, University
at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|