1
|
Abedi R, Raoof JB, Bagheri Hashkavayi A, Jalayeri Darbandi Z, Abedi P, Barati Darband G. Innovations in aptamer-based biosensors for detection of pathogenic bacteria: Recent advances and perspective. Talanta 2025; 295:128330. [PMID: 40388877 DOI: 10.1016/j.talanta.2025.128330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/10/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
The rapid and accurate detection of pathogenic bacteria is a pressing concern in the fields of public health, food safety, and environmental monitoring. However, traditional methods often prove to be slow and difficult to quantify accurately. Thus, there is a pressing need to develop advanced methods that enable rapid detection which is sensitive and inexpensive. Aptamers, which are short nucleic acid sequences derived through a process called systematic evolution of ligands by exponential enrichment (SELEX), offer a promising alternative due to their unique binding characteristics. These properties confer several advantages over traditional antibodies, making aptamers effective and versatile bioreceptors for pathogen detection. Recent advancements have led to the development of various aptamer-based biosensors utilizing diverse signaling strategies, including optical, electrochemical, mass-based, paper-based and microchip capillary electrophoresis (MCE) methods. The integration of nanomaterials with aptamer technology has further enhanced biosensor performance by improving sensitivity and enabling real-time monitoring of bacterial contamination. In this review, the focus is on current developments in aptamer-based biosensors and their potential applications in clinical diagnostics, food safety and environmental monitoring. As research progresses, the customization of aptamer sequences for specific targets is expected to yield tailored diagnostic solutions, ultimately improving patient outcomes and public health responses. The continued exploration of aptamer technology marks a significant advancement in methodologies for detecting pathogenic bacteria, highlighting not only the promise of aptamers as effective detection tools but also the critical need for multidisciplinary collaboration, integrating molecular biology, materials science, and microfluidics, to overcome challenges in this field.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, 91775-1111, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Applied Physical Sciences, University of North Carolina- Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC, 27599-2100, USA
| | - Zahra Jalayeri Darbandi
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 917794-8564, Iran
| | - Pouria Abedi
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghasem Barati Darband
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, 91775-1111, Iran.
| |
Collapse
|
2
|
Lin X, Liu C, Lei Q, Nan X, Zhu Y, Liao J, Du Z, Ye C, Xiong Y, Yang M, Fang X, Luo Y, Huang Q. A novel ratiometric electrochemical aptasensor based on graphene quantum dots/Cu-MOF nanocomposite for the on-site determination of Staphylococcus aureus. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136845. [PMID: 39689564 DOI: 10.1016/j.jhazmat.2024.136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
The sensitive detection of Staphylococcus aureus (S. aureus) holds great practical importance for ensuring public health and food safety. In this study, a sensitivity and stability ratiometric electrochemical aptasensor using graphene quantum dots/[Cu2.5 (benzotriazole-5-COO)1.5 (benzotriazole-5-COOH)0.5 (μ-Cl)0.5 (μ3-OH)-(H2O)]·3 H2O nanocomposite (GQDs/Cu-MOF) was constructed for S. aureus detection. The GQDs enhanced the sensitivity of the electrochemical aptasensor due to their excellent conductivity and provided stability through their abundant carboxyl groups. The Cu-MOF, possessing electrical activity, not only enhanced the performance of the electrochemical aptasensor but also served as a signal label. The single-stranded DNA1 (S1) was immobilized on the surface of a GQDs/Cu-MOF/screen-printed carbon electrode (S1/GQDs/Cu-MOF/SPCE) as the sensing interface. Subsequently, the S1/GQDs/Cu-MOF/SPCE was hybridized with the probe DNA-ferrocene (S2-Fc), resulting in the generation of electrochemical signals from Cu-MOF (ICu-MOF) and S2-ferrocene (IS2-FC) within the system. However, the electron transfer performance of DNA at the sensing interface was compromised, leading to a reduction in the ICu-MOF. When S. aureus was present in the system, S2-Fc reacted with it and detached from the sensing surface, resulting in a gradual decrease in IS2-FC and an increase in ICu-MOF. Then a ratiometric electrochemical aptasensor was established for S. aureus detection with remarkable sensitivity (0.97 CFU·mL-1), excellent stability, and a broad linear range. Furthermore, the aptasensor was successfully applied to detect S. aureus in tap water, milk, Lonicera japonica, urine, and Zhangjiang River. Additionally, this aptasensor design can be adapted for the detection of other foodborne pathogens, which indicates that the design scheme of the aptasensor has good universality.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenghao Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Qiaowen Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Xinru Nan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Yunxiao Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Jing Liao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Zhizhi Du
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenyi Ye
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Yixian Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Min Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Xiaojun Fang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China; Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Medical and Information Engineering, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
3
|
Ye Z, Chen H, Weinans H, van der Wal B, Rios JL. Novel Aptamer Strategies in Combating Bacterial Infections: From Diagnostics to Therapeutics. Pharmaceutics 2024; 16:1140. [PMID: 39339177 PMCID: PMC11435160 DOI: 10.3390/pharmaceutics16091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial infections and antimicrobial resistance are posing substantial difficulties to the worldwide healthcare system. The constraints of conventional diagnostic and therapeutic approaches in dealing with continuously changing infections highlight the necessity for innovative solutions. Aptamers, which are synthetic oligonucleotide ligands with a high degree of specificity and affinity, have demonstrated significant promise in the field of bacterial infection management. This review examines the use of aptamers in the diagnosis and therapy of bacterial infections. The scope of this study includes the utilization of aptasensors and imaging technologies, with a particular focus on their ability to detect conditions at an early stage. Aptamers have shown exceptional effectiveness in suppressing bacterial proliferation and halting the development of biofilms in therapeutic settings. In addition, they possess the capacity to regulate immune responses and serve as carriers in nanomaterial-based techniques, including radiation and photodynamic therapy. We also explore potential solutions to the challenges faced by aptamers, such as nuclease degradation and in vivo instability, to broaden the range of applications for aptamers to combat bacterial infections.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Huaizhi Chen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
| | - Bart van der Wal
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jaqueline Lourdes Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Hemdan M, Ali MA, Doghish AS, Mageed SSA, Elazab IM, Khalil MM, Mabrouk M, Das DB, Amin AS. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. SENSORS (BASEL, SWITZERLAND) 2024; 24:5143. [PMID: 39204840 PMCID: PMC11360123 DOI: 10.3390/s24165143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review delves into the forefront of biosensor technologies and their critical roles in disease biomarker detection and therapeutic drug monitoring. It provides an in-depth analysis of various biosensor types and applications, including enzymatic sensors, immunosensors, and DNA sensors, elucidating their mechanisms and specific healthcare applications. The review highlights recent innovations such as integrating nanotechnology, developing wearable devices, and trends in miniaturisation, showcasing their transformative potential in healthcare. In addition, it addresses significant sensitivity, specificity, reproducibility, and data security challenges, proposing strategic solutions to overcome these obstacles. It is envisaged that it will inform strategic decision-making, drive technological innovation, and enhance global healthcare outcomes by synthesising multidisciplinary insights.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Ibrahim M. Elazab
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Magdy M. Khalil
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt;
- School of Applied Health Sciences, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Giza 12622, Egypt;
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Alaa S. Amin
- Chemistry Department, Faculty of Science, Benha University, Benha 13511, Egypt;
| |
Collapse
|
5
|
Dubourg G, Pavlović Z, Bajac B, Kukkar M, Finčur N, Novaković Z, Radović M. Advancement of metal oxide nanomaterials on agri-food fronts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172048. [PMID: 38580125 DOI: 10.1016/j.scitotenv.2024.172048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
The application of metal oxide nanomaterials (MOx NMs) in the agrifood industry offers innovative solutions that can facilitate a paradigm shift in a sector that is currently facing challenges in meeting the growing requirements for food production, while safeguarding the environment from the impacts of current agriculture practices. This review comprehensively illustrates recent advancements and applications of MOx for sustainable practices in the food and agricultural industries and environmental preservation. Relevant published data point out that MOx NMs can be tailored for specific properties, enabling advanced design concepts with improved features for various applications in the agrifood industry. Applications include nano-agrochemical formulation, control of food quality through nanosensors, and smart food packaging. Furthermore, recent research suggests MOx's vital role in addressing environmental challenges by removing toxic elements from contaminated soil and water. This mitigates the environmental effects of widespread agrichemical use and creates a more favorable environment for plant growth. The review also discusses potential barriers, particularly regarding MOx toxicity and risk evaluation. Fundamental concerns about possible adverse effects on human health and the environment must be addressed to establish an appropriate regulatory framework for nano metal oxide-based food and agricultural products.
Collapse
Affiliation(s)
- Georges Dubourg
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| | - Zoran Pavlović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Branimir Bajac
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Manil Kukkar
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Nina Finčur
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Zorica Novaković
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Marko Radović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
6
|
Léguillier V, Heddi B, Vidic J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. BIOSENSORS 2024; 14:210. [PMID: 38785684 PMCID: PMC11117931 DOI: 10.3390/bios14050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.
Collapse
Affiliation(s)
- Vincent Léguillier
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Brahim Heddi
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
| |
Collapse
|