1
|
Ren B, Tang Y, Zhang D, Liu Y, Zhang Y, Chen H, Hu R, Zhang M, Zheng J. Conformational-Specific Self-Assembled Peptides as Dual-Mode, Multi-target Inhibitors and Detectors for Different Amyloid Pro-teins. J Mater Chem B 2022; 10:1754-1762. [DOI: 10.1039/d1tb02775a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prevention and detection of misfolded amyloid proteins and their β-structure-rich aggregates are the two promising but differ-ent (pre)clinical strategies to treat and diagnose neurodegenerative diseases including Alzheimer’s diseases (AD) and...
Collapse
|
2
|
Matthiesen I, Voulgaris D, Nikolakopoulou P, Winkler TE, Herland A. Continuous Monitoring Reveals Protective Effects of N-Acetylcysteine Amide on an Isogenic Microphysiological Model of the Neurovascular Unit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101785. [PMID: 34174140 DOI: 10.1002/smll.202101785] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Indexed: 05/20/2023]
Abstract
Microphysiological systems mimic the in vivo cellular ensemble and microenvironment with the goal of providing more human-like models for biopharmaceutical research. In this study, the first such model of the blood-brain barrier (BBB-on-chip) featuring both isogenic human induced pluripotent stem cell (hiPSC)-derived cells and continuous barrier integrity monitoring with <2 min temporal resolution is reported. Its capabilities are showcased in the first microphysiological study of nitrosative stress and antioxidant prophylaxis. Relying on off-stoichiometry thiol-ene-epoxy (OSTE+) for fabrication greatly facilitates assembly and sensor integration compared to the prevalent polydimethylsiloxane devices. The integrated cell-substrate endothelial resistance monitoring allows for capturing the formation and breakdown of the BBB model, which consists of cocultured hiPSC-derived endothelial-like and astrocyte-like cells. Clear cellular disruption is observed when exposing the BBB-on-chip to the nitrosative stressor linsidomine, and the barrier permeability and barrier-protective effects of the antioxidant N-acetylcysteine amide are reported. Using metabolomic network analysis reveals further drug-induced changes consistent with prior literature regarding, e.g., cysteine and glutathione involvement. A model like this opens new possibilities for drug screening studies and personalized medicine, relying solely on isogenic human-derived cells and providing high-resolution temporal readouts that can help in pharmacodynamic studies.
Collapse
Affiliation(s)
- Isabelle Matthiesen
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Dimitrios Voulgaris
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| | - Polyxeni Nikolakopoulou
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| | - Thomas E Winkler
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
| |
Collapse
|
3
|
Ghosh P, Bera A, Bhadury P, De P. From Small Molecules to Synthesized Polymers: Potential Role in Combating Amyloidogenic Disorders. ACS Chem Neurosci 2021; 12:1737-1748. [PMID: 33929827 DOI: 10.1021/acschemneuro.1c00104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The concept of developing novel anti-amyloid inhibitors in the scientific community has engrossed remarkable research interests and embraced significant potential to resolve numerous pathological conditions including neurological as well as non-neuropathic disorders associated with amyloid protein aggregation. These pathological conditions have harmful effects on cellular activities which include malfunctioning of organs and tissue, cellular impairment, etc. To date, different types of small molecular probes like polyphenolic compounds, nanomaterials, surfactants, etc. have been developed to address these issues. Recently synthetic polymeric materials are extensively investigated to explore their role in the protein aggregation pathway. On the basis of these perspectives, in this review article, we have comprehensively summarized the current perspectives on protein misfolding and aggregation and importance of therapeutic approaches in designing novel effective inhibitors. The main purpose of this review article is to provide a detailed perspective of the current landscape as well as trailblazing voyage of various inhibitors ranging from small molecular probes to polymeric scaffolds in the field of protein misfolding and aggregation. A particular emphasis is given on the structural role and molecular mechanistic pathway involved in modulating the aggregation pathway to further inspire the researchers and shed light in this bright research field.
Collapse
|
4
|
Tang Y, Liu Y, Zhang Y, Zhang D, Gong X, Zheng J. Repurposing a Cardiovascular Disease Drug of Cloridarol as hIAPP Inhibitor. ACS Chem Neurosci 2021; 12:1419-1427. [PMID: 33780229 DOI: 10.1021/acschemneuro.1c00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence have shown a strong pathological correlation between cardiovascular disease (CVD) and Type II diabetes (T2D), both of which share many common risk factors (e.g., hyperglycemia, hypertension, hypercoagulability, and dyslipidemia) and mutually contribute to each other. Driven by such strong CVD-T2D correlation and marginal benefits from drug development for T2D, here we proposed to repurpose a CVD drug of cloridarol as human islet amyloid peptide (hIAPP) inhibitor against its abnormal misfolding and aggregation, which is considered as a common and critical pathological event in T2D. To this end, we investigated the inhibition activity of cloridarol on the aggregation and toxicity of hIAPP1-37 using combined experimental and computational approaches. Collective experimental data from ThT, AFM, and CD demonstrated the inhibition ability of cloridarol to prevent hIAPP aggregation from its monomeric and oligomeric states, leading to the overall reduction of hIAPP fibrils up to 57% at optimal conditions. MTT and LDH cell assays also showed that cloridarol can also effectively increase cell viability by 15% and decrease cell apoptosis by 28%, confirming its protection of islet β-cells from hIAPP-induced cell toxicity. Furthermore, comparative molecular dynamics simulations revealed that cloridarol was preferentially bound to the C-terminal β-sheet region of hIAPP oligomers through a combination of hydrophobic interactions, π-π stacking, and hydrogen bonding. Such multiple site bindings allowed cloridarol to disturb hIAPP structures, reduce β-sheet content, and block the lateral association pathway of hIAPP aggregates, thus explaining experimental findings. Different from other single-target hIAPP inhibitors, cloridarol is unique in that it works as both a CVD drug and hIAPP inhibitor, which can be used as a viable structural template (especially for benzofuran) for the further development of cloridarol-based or benzofuran-based inhibitors of amyloid proteins.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| | | | | | - Xiong Gong
- Department of Polymer Engineering The University of Akron, Ohio 44325, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio 44325, United States
| |
Collapse
|
5
|
Jakubowski J, Orr AA, Le DA, Tamamis P. Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:289-305. [PMID: 31809572 PMCID: PMC7732148 DOI: 10.1021/acs.jcim.9b00561] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 12/24/2022]
Abstract
The aggregation of amyloid-β (Aβ) peptides into senile plaques is a hallmark of Alzheimer's disease (AD) and is hypothesized to be the primary cause of AD related neurodegeneration. Previous studies have shown the ability of curcumin to both inhibit the aggregation of Aβ peptides into oligomers or fibrils and reduce amyloids in vivo. Despite the promise of curcumin and its derivatives to serve as diagnostic, preventative, and potentially therapeutic AD molecules, the mechanism by which curcumin and its derivatives bind to and inhibit Aβ fibrils' formation remains elusive. Here, we investigated curcumin and a set of curcumin derivatives in complex with a hexamer peptide model of the Aβ1-42 fibril using nearly exhaustive docking, followed by multi-ns molecular dynamics simulations, to provide atomistic-detail insights into the molecules' binding and inhibitory properties. In the vast majority of the simulations, curcumin and its derivatives remain firmly bound in complex with the fibril through primarily three different principle binding modes, in which the molecules interact with residue domain 17LVFFA21, in line with previous experiments. In a small subset of these simulations, the molecules partly dissociate the outermost peptide of the Aβ1-42 fibril by disrupting β-sheets within the residue domain 12VHHQKLVFF20. A comparison between binding modes leading or not leading to partial dissociation of the outermost peptide suggests that the latter is attributed to a few subtle key structural and energetic interaction-based differences. Interestingly, partial dissociation appears to be either an outcome of high affinity interactions or a cause leading to high affinity interactions between the molecules and the fibril, which could partly serve as a compensation for the energy loss in the fibril due to partial dissociation. In conjunction with this, we suggest a potential inhibition mechanism of Αβ1-42 aggregation by the molecules, where the partially dissociated 16KLVFF20 domain of the outermost peptide could either remain unstructured or wrap around to form intramolecular interactions with the same peptide's 29GAIIG33 domain, while the molecules could additionally act as a patch against the external edge of the second outermost peptide's 16KLVFF20 domain. Thereby, individually or concurrently, these could prohibit fibril elongation.
Collapse
Affiliation(s)
| | | | - Doan A. Le
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Phanourios Tamamis
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
6
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
7
|
Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophys Rev 2019; 11:10.1007/s12551-019-00606-2. [PMID: 31713720 DOI: 10.1007/s12551-019-00606-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported that amyloid hypothesis-based treatments can be developed as a new approach to overcome the limitations and challenges associated with conventional AD therapeutics. In this review, we will provide a comprehensive view of the challenges in AD therapy and pathophysiology. We also discuss currently known compounds that can inhibit amyloid-β (Aβ) aggregation and their potential role in advancing current AD treatments. We have specifically focused on Aβ aggregation inhibitors including metal chelators, nanostructures, organic molecules, peptides (or peptide mimics), and antibodies. To date, these molecules have been the subject of numerous in vitro and in vivo assays as well as molecular dynamics simulations to explore their mechanism of action and the fundamental structural groups involved in Aβ aggregation. Ultimately, the aim of these studies (and current review) is to achieve a rational design for effective therapeutic agents for AD treatment and diagnostics.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials , Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Hossein Behnammanesh
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, P.O. Box: 71555-313, Shiraz, Iran.
| |
Collapse
|
8
|
RTHLVFFARK-NH2: A potent and selective modulator on Cu2+-mediated amyloid-β protein aggregation and cytotoxicity. J Inorg Biochem 2018; 181:56-64. [DOI: 10.1016/j.jinorgbio.2018.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/09/2018] [Accepted: 01/19/2018] [Indexed: 12/23/2022]
|
9
|
Ren B, Liu Y, Zhang Y, Zhang M, Sun Y, Liang G, Xu J, Zheng J. Tanshinones inhibit hIAPP aggregation, disaggregate preformed hIAPP fibrils, and protect cultured cells. J Mater Chem B 2018; 6:56-67. [DOI: 10.1039/c7tb02538f] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tanshinones act as common inhibitors to inhibit the aggregation of both hIAPP and Aβ, disaggregate preformed hIAPP and Aβ amyloid fibrils, and protect cells from hIAPP- and Aβ-induced toxicity.
Collapse
Affiliation(s)
- Baiping Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Science and Chemistry
- Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Yonglan Liu
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Yanxian Zhang
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| | - Yan Sun
- Department of Biochemical Engineering
- Key Laboratory of Systems Bioengineering of the Ministry of Education School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology
- Ministry of Education College
- Chongqing University
- Chongqing 400044
- China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Science and Chemistry
- Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering
- The University of Akron
- Ohio 44325
- USA
| |
Collapse
|
10
|
Yang F, Liu Y, Zhang Y, Ren B, Xu J, Zheng J. Synthesis and Characterization of Ultralow Fouling Poly(N-acryloyl-glycinamide) Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13964-13972. [PMID: 29160706 DOI: 10.1021/acs.langmuir.7b03435] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The rational design of biomaterials with antifouling properties still remains a challenge, although this is important for many bench-to-bedside applications for biomedical implants, drug delivery carriers, and marine coatings. Herein, we synthesized and characterized poly(N-acryloylglycinamide) (polyNAGA) and then grafted poly(NAGA) onto Au substrate to form polymer brushes with well-controlled film stability, wettability, and thickness using surface-initiated atom transfer radical polymerization (SI-ATRP). The NAGA monomer integrates two hydrophilic amides on the side chain to enhance surface hydration, which is thought as a critical contributor to its antifouling property. The antifouling performances of poly(NAGA) brushes of different film thicknesses were then rigorously assessed and compared using protein adsorption assay from undiluted blood serum and plasma, cell-adhesive assay, and bacterial assay. The resulting poly(NAGA) brushes with a film thickness of 25-35 nm exhibited excellent in vitro antifouling ability to prevent unwanted protein adsorption (<0.3 ng/cm2) and bacterial and cell attachments up to 3 days. Molecular dynamics (MD) simulations further showed that two hydrophilic amide groups can interact with water molecules strongly to form a strong hydration layer via coordinated hydrogen bonds. This confirms a positive correlation between antifouling property and surface hydration. In line with a series of polyacrylamides and polyacrylates as antifouling materials synthesized in our lab, we propose that small structural changes in the pendent groups of polymers could largely improve the antifouling capacity, which may be used as a general design rule for developing next-generation antifouling materials.
Collapse
Affiliation(s)
- Fengyu Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology , Zhuzhou 412007, P. R. China
- Department of Chemical & Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Yonglan Liu
- Department of Chemical & Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Yanxian Zhang
- Department of Chemical & Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Baiping Ren
- Department of Chemical & Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology , Zhuzhou 412007, P. R. China
- Department of Chemical & Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|