1
|
Jain M, Sahoo A, Matysiak S. Modulation of Aβ 16-22 aggregation by glucose. Phys Chem Chem Phys 2024; 26:5038-5044. [PMID: 38258497 DOI: 10.1039/d3cp04494g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The self-assembly of amyloid-beta (Aβ) peptides into fibrillar structures in the brain is a signature of Alzheimer's disease. Recent studies have reported correlations between Alzheimer's disease and type-2 diabetes. Structurally, hyperglycemia induces covalent protein crosslinkings by advanced glycation end products (AGE), which can affect the stability of Aβ oligomers. In this work, we leverage physics-based coarse-grained molecular simulations to probe alternate thermodynamic pathways that affect peptide aggregation propensities at varying concentrations of glucose molecules. Similar to previous experimental reports, our simulations show a glucose concentration-dependent increase in Aβ aggregation rates, without changes in the overall secondary structure content. We discovered that glucose molecules prefer partitioning onto the aggregate-water interface at a specific orientation, resulting in a loss of molecular rotational entropy. This effectively hastens the aggregation rates, as peptide self-assembly can reduce the available surface area for peptide-glucose interactions. This work introduces a new thermodynamic-driven pathway, beyond chemical cross-linking, that can modulate Aβ aggregation.
Collapse
Affiliation(s)
- Meenal Jain
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Abhilash Sahoo
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Silvina Matysiak
- Biophysics Program, Institute of Physical Science and Technology, University of Maryland, College Park, MD, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Ghosh B, Sengupta N. The protein hydration layer in high glucose concentration: Dynamical responses in folded and intrinsically disordered dimeric states. Biochem Biophys Res Commun 2021; 577:124-129. [PMID: 34509724 DOI: 10.1016/j.bbrc.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
This exposition reveals the effect of glucose as a molecular crowder on the solvent environment in proximity of the protein surface in putative folded (Ubiquitin) and intrinsically disordered (dimeric Amyloid beta) states. Atomistic simulations reveal markedly higher structural perturbation in the disordered systems due to crowding effects, while the folded state retains overall structural fidelity. Key hydrophobic contacts in the disordered dimer are lost. However, glucose induced crowding results in elevated hydration on surfaces of both protein systems. Despite evident differences in their structural responses, the hydration layer of both the folded and disordered states display a distinct enhancement in lifetimes of mean residence and rotational relaxation under the hyperglycemic conditions. The results are crucial in the light of emergent co-solvent induced biological phenomena in crowded media.
Collapse
Affiliation(s)
- Brataraj Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741 246, India.
| |
Collapse
|
3
|
Wang K, Na L, Duan M. The Pathogenesis Mechanism, Structure Properties, Potential Drugs and Therapeutic Nanoparticles against the Small Oligomers of Amyloid-β. Curr Top Med Chem 2021; 21:151-167. [PMID: 32938351 DOI: 10.2174/1568026620666200916123000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disease that affects millions of people in the world. The abnormal aggregation of amyloid β protein (Aβ) is regarded as the key event in AD onset. Meanwhile, the Aβ oligomers are believed to be the most toxic species of Aβ. Recent studies show that the Aβ dimers, which are the smallest form of Aβ oligomers, also have the neurotoxicity in the absence of other oligomers in physiological conditions. In this review, we focus on the pathogenesis, structure and potential therapeutic molecules against small Aβ oligomers, as well as the nanoparticles (NPs) in the treatment of AD. In this review, we firstly focus on the pathogenic mechanism of Aβ oligomers, especially the Aβ dimers. The toxicity of Aβ dimer or oligomers, which attributes to the interactions with various receptors and the disruption of membrane or intracellular environments, were introduced. Then the structure properties of Aβ dimers and oligomers are summarized. Although some structural information such as the secondary structure content is characterized by experimental technologies, detailed structures are still absent. Following that, the small molecules targeting Aβ dimers or oligomers are collected; nevertheless, all of these ligands have failed to come into the market due to the rising controversy of the Aβ-related "amyloid cascade hypothesis". At last, the recent progress about the nanoparticles as the potential drugs or the drug delivery for the Aβ oligomers are present.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liu Na
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Naftaly A, Izgilov R, Omari E, Benayahu D. Revealing Advanced Glycation End Products Associated Structural Changes in Serum Albumin. ACS Biomater Sci Eng 2021; 7:3179-3189. [PMID: 34143596 DOI: 10.1021/acsbiomaterials.1c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural alterations in proteins have a significant impact on their function and body physiology. Glycation via nonenzymatic forms of cross-linking leads to proteins' conformational changes, the macromolecule being recognized as a stable fibrillary structure, oligomerization, and becoming advanced glycation end products (AGEs). Protein that undergoes glycation-related modifications, namely, β-sheet enriched structural changes, are recognized as amyloid. In the current study, we characterized a single protein modified in vitro under physiological conditions to represent a protein glycation model. The glycation altered the helical conformation of serum albumin (SA) and promoted the formation of a β-sheet enriched with amyloid fibrils detected at multidimensional levels. The nanoscale resolution by spectroscopy in the presence of thioflavin-T (ThT) and 8-anilinonaphthalene-1-sulfonic acid (8-ANS) showed binding of the fibrils formed in the presence of glucose (GLU) and the carbonyl metabolites methylglyoxal (MGO) and glycolaldehyde (GAD). In the presence of MGO and GAD, the SA becomes insoluble aggregates, demonstrated by TEM microscopy and dynamic light scattering (DLS). The protein oligomerization was visualized when separated via SDS gel electrophoresis and mass photometry (MP) assays. Following the glycation, eventually, the material polymerized and became stiffer. The level of stiffness was analyzed by a rheometer that revealed a quick alteration under MGO and GAD. This is the first study to combine multiple spectroscopy assays, imaging, and rheology measurements of SA and to demonstrate a resolution on a nanoscale structural toward better resolution of the conformational changes of glycated SA, oligomerization, and protein aggregations under physiological conditions.
Collapse
Affiliation(s)
- Alex Naftaly
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Roza Izgilov
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Eman Omari
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Levanon St., P.O. Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Mitochondrial remodelling-a vicious cycle in diabetic complications. Mol Biol Rep 2021; 48:4721-4731. [PMID: 34023988 DOI: 10.1007/s11033-021-06408-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus (DM) is a chronic, metabolic condition characterized by excessive blood glucose that causes perturbations in physiological functioning of almost all the organs of human body. This devastating metabolic disease has its implications in cognitive decline, heart damage, renal, retinal and neuronal complications that severely affects quality of life and associated with decreased life expectancy. Mitochondria possess adaptive mechanisms to meet the cellular energy demand and combat cellular stress. In recent years mitochondrial homeostasis has been point of focus where several mechanisms regulating mitochondrial health and function are evaluated. Mitochondrial dynamics plays crucial role in maintaining healthy mitochondria in cell under physiological as well as stress condition. Mitochondrial dynamics and corresponding regulating mechanisms have been implicated in progression of metabolic disorders including diabetes and its complications. In current review we have discussed about role of mitochondrial dynamics under physiological and pathological conditions. Also, modulation of mitochondrial fission and fusion in diabetic complications are described. The available literature supports mitochondrial remodelling as reliable target for diabetic complications.
Collapse
|
6
|
Maulik M, Vasan L, Bose A, Dutta Chowdhury S, Sengupta N, Das Sarma J. Amyloid-β regulates gap junction protein connexin 43 trafficking in cultured primary astrocytes. J Biol Chem 2020; 295:15097-15111. [PMID: 32868453 DOI: 10.1074/jbc.ra120.013705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/06/2020] [Indexed: 11/06/2022] Open
Abstract
Altered expression and function of astroglial gap junction protein connexin 43 (Cx43) has increasingly been associated to neurotoxicity in Alzheimer disease (AD). Although earlier studies have examined the effect of increased β-amyloid (Aβ) on Cx43 expression and function leading to neuronal damage, underlying mechanisms by which Aβ modulates Cx43 in astrocytes remain elusive. Here, using mouse primary astrocyte cultures, we have examined the cellular processes by which Aβ can alter Cx43 gap junctions. We show that Aβ25-35 impairs functional gap junction coupling yet increases hemichannel activity. Interestingly, Aβ25-35 increased the intracellular pool of Cx43 with a parallel decrease in gap junction assembly at the surface. Intracellular Cx43 was found to be partly retained in the endoplasmic reticulum-associated cell compartments. However, forward trafficking of the newly synthesized Cx43 that already reached the Golgi was not affected in Aβ25-35-exposed astrocytes. Supporting this, treatment with 4-phenylbutyrate, a well-known chemical chaperone that improves trafficking of several transmembrane proteins, restored Aβ-induced impaired gap junction coupling between astrocytes. We further show that interruption of Cx43 endocytosis in Aβ25-35-exposed astrocytes resulted in their retention at the cell surface in the form of functional gap junctions indicating that Aβ25-35 causes rapid internalization of Cx43 gap junctions. Additionally, in silico molecular docking suggests that Aβ can bind favorably to Cx43. Our study thus provides novel insights into the cellular mechanisms by which Aβ modulates Cx43 function in astrocytes, the basic understanding of which is vital for the development of alternative therapeutic strategy targeting connexin channels in AD.
Collapse
Affiliation(s)
- Mahua Maulik
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| | - Lakshmy Vasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Saikat Dutta Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
7
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Influence of crowding and surfaces on protein amyloidogenesis: A thermo-kinetic perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:941-953. [PMID: 30928692 DOI: 10.1016/j.bbapap.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 01/24/2023]
Abstract
The last few decades have irreversibly implicated protein self-assembly and aggregation leading to amyloid fibril formation in proteopathies that include several neurodegenerative diseases. Emerging studies recognize the importance of eliciting the pathways leading to protein aggregation in the context of the crowded intracellular environment rather than in conventional in vitro conditions. It is found that crowded environments can have acceleratory as well as inhibitory effects on protein aggregation, depending on the interplay of underlying factors on the crucial rate limiting steps. The aggregation mechanism and transient species formed along the pathway are further altered when they interface with natural and artificial surfaces in the cellular milieu. An increasing number of studies probe the autocatalytic nature of amyloid surfaces as well as membrane bilayer effects on amyloidogenesis. Moreover, exposure to modern nanosurfaces via nanomedicines and other sources potentially invokes beneficial or deleterious biological response that needs rigorous investigation. Mounting evidences indicate that nanoparticles can either promote or impede amyloid aggregation, spurring efforts to tune their interactions for developing effective anti-amyloid strategies. Mechanistic insights into nanoparticle mediated aggregation pathways are therefore crucial for engineering anti-amyloid nanoparticle strategies that are biocompatible and sustainable. This review is a compilation of studies that contribute to the current understanding of the altering effects of molecular crowding as well as natural and artificial surfaces on protein amyloidogenesis.
Collapse
|
9
|
Phosphorylation promotes binding affinity of Rap-Raf complex by allosteric modulation of switch loop dynamics. Sci Rep 2018; 8:12976. [PMID: 30154518 PMCID: PMC6113251 DOI: 10.1038/s41598-018-31234-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
The effects of phosphorylation of a serine residue on the structural and dynamic properties of Ras-like protein, Rap, and its interactions with effector protein Ras binding domain (RBD) of Raf kinase, in the presence of GTP, are investigated via molecular dynamics simulations. The simulations show that phosphorylation significantly effects the dynamics of functional loops of Rap which participate in the stability of the complex with effector proteins. The effects of phosphorylation on Rap are significant and detailed conformational analysis suggest that the Rap protein, when phosphorylated and with GTP ligand, samples different conformational space as compared to non-phosphorylated protein. In addition, phosphorylation of SER11 opens up a new cavity in the Rap protein which can be further explored for possible drug interactions. Residue network analysis shows that the phosphorylation of Rap results in a community spanning both Rap and RBD and strongly suggests transmission of allosteric effects of local alterations in Rap to distal regions of RBD, potentially affecting the downstream signalling. Binding free energy calculations suggest that phosphorylation of SER11 residue increases the binding between Rap and Raf corroborating the network analysis results. The increased binding of the Rap-Raf complex can have cascading effects along the signalling pathways where availability of Raf can influence the oncogenic effects of Ras proteins. These simulations underscore the importance of post translational modifications like phosphorylation on the functional dynamics in proteins and can be an alternative to drug-targeting, especially in notoriously undruggable oncoproteins belonging to Ras-like GTPase family.
Collapse
|
10
|
Mittal S, Bravo-Rodriguez K, Sanchez-Garcia E. Mechanism of Inhibition of Beta Amyloid Toxicity by Supramolecular Tweezers. J Phys Chem B 2018; 122:4196-4205. [DOI: 10.1021/acs.jpcb.7b10530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sumit Mittal
- University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | | | | |
Collapse
|
11
|
Arsiccio A, Pisano R. Clarifying the role of cryo- and lyo-protectants in the biopreservation of proteins. Phys Chem Chem Phys 2018. [PMID: 29528066 DOI: 10.1039/c7cp08029h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biopharmaceuticals are frequently stored in the frozen state to avoid rapid degradation. Moreover, therapeutic proteins are frequently made into a dried form to provide long-term storage. However, both freezing and drying stresses can result in protein unfolding and aggregation. Thus, a proper formulation, containing suitable excipients, must be used to avoid loss of activity. Here, the conformational stability of a model protein, human growth hormone, is studied during freezing, and in the dried state as well, using molecular dynamics. The impact of the ice-water interface and of water removal is deeply investigated, and the role of protectants in preventing denaturation phenomena is addressed. We found that good cryo-protectants not always are equally effective as lyo-protectants, and experimental data confirmed simulation results. From this analysis, we also discovered that the interaction of stabilizers with specific amino acid sequences of the protein, rather than with the molecule as a whole, seems to be a crucial issue in the preservation of protein structure. This finding was confirmed for another protein, i.e., lactate dehydrogenase, thus suggesting that it is a generally applicable result. Remarkably, those sequences which unfolded during freezing and drying, generally coincided with the aggregation prone regions of the protein.
Collapse
Affiliation(s)
- Andrea Arsiccio
- Department of Applied Science and Technology, Politecnico di Torino 24 corso Duca degli Abruzzi, Torino, 10129, Italy.
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino 24 corso Duca degli Abruzzi, Torino, 10129, Italy.
| |
Collapse
|
12
|
Pongprayoon P, Mori T. The critical role of dimer formation in monosaccharides binding to human serum albumin. Phys Chem Chem Phys 2018; 20:3249-3257. [DOI: 10.1039/c7cp06324e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monosaccharides are found to bind tightly to human serum albumin when a dimeric structure is formed in the binding pocket.
Collapse
Affiliation(s)
| | - Toshifumi Mori
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Japan
- School of Physical Sciences
| |
Collapse
|
13
|
Weber OC, Uversky VN. How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β 42 in water. INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1377813. [PMID: 30250773 DOI: 10.1080/21690707.2017.1377813] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Amyloid-β42 (Aβ42) is an intrinsically disordered peptide intimately related to the pathogenesis of several neurodegenerative diseases. Molecular dynamics (MD) simulations are extensively utilized in the characterization of the structures and conformational dynamics of intrinsically disordered proteins (IDPs) including Aβ42, with AMBER and CHARMM parameters being commonly used in these studies. Recently, comparison of the effects of force field parameters on the Aβ42 structures has started to gain significant attention. In this study, the structures of Aβ42 are simulated using AMBER FF99SB and CHARMM22/CMAP parameters via replica exchange MD simulations utilizing a widely used clustering algorithm. These analyses show that the structural properties (extent and positioning of the elements of secondary and tertiary structure), radius of gyration values, number and position of salt bridges are extremely dependent on the chosen force field parameters notably with the usage of clustering algorithms. For example, predicted secondary structure elements, which are of the great importance for better understanding of the molecular mechanisms of neurodegenerative diseases, deviate enormously in models generated using currently available force field parameters for proteins. Based on the derived models, chemical shift values are calculated and compared to the experimentally determined data. This comparison revealed that although both force field parameters yield results in agreement with experiments, the obtained structural properties were rather different using a clustering algorithm. In other words, these results show that the predicted structures depend heavily on the force field parameters. Importantly, since none of the force field parameters currently utilized in MD studies were developed specifically taking into account the disordered nature of IDPs, these findings clearly indicate that new force field parameters have to be developed for IDPs considering their rapid flexibility and dynamics with high amplitude. Furthermore, molecular simulations of IDPs are typically conducted using one water volume. We show that the confined aqueous volume impacts the predicted structural properties of Aβ42 in water. Although up to date, confined aqueous volume effects have been ignored in the MD simulations of IDPs in water, our data indicate that these effects have to be taken into account in predicting the structural and thermodynamic properties of disordered proteins in solution.
Collapse
Affiliation(s)
- Orkid Coskuner Weber
- Department of Chemistry and Neurosciences Institute, The University of Texas at San Antonio, San Antonio, TX, USA.,Institut für Physikalische Chemie, Universität zu Köln, Köln, Germany.,Molecular Biotechnology Division, Turkisch-Deutsche Universität, Istanbul Turkey
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
14
|
Zhang T, Tian Y, Li Z, Liu S, Hu X, Yang Z, Ling X, Liu S, Zhang J. Molecular Dynamics Study to Investigate the Dimeric Structure of the Full-Length α-Synuclein in Aqueous Solution. J Chem Inf Model 2017; 57:2281-2293. [DOI: 10.1021/acs.jcim.7b00210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tingting Zhang
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Siming Liu
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiang Hu
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zichao Yang
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiaotong Ling
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of
New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| |
Collapse
|