1
|
Sarkar C, De A, Maji S, Kłak J, Kundu S, Bera M. Design, Synthesis, Magnetic Properties, and Hydrogen Evolution Reaction of a Butterfly-like Heterometallic Trinuclear [Cu II2Mn II] Cluster. Inorg Chem 2024. [PMID: 39556317 DOI: 10.1021/acs.inorgchem.4c03723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A novel heterometallic trinuclear cluster [CuII2MnII(cpdp)(NO3)2(Cl)] (1) has been designed and synthesized by employing a molecular library approach that uses CuCl2·2H2O and Mn(NO3)2·4H2O as inorganic metal salts and H3cpdp as a multifunctional organic scaffold (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol). This heterometallic cluster has emerged as an unusual ferromagnetic material and promising electrocatalyst for hydrogen evolution reaction (HER) in the domain of inorganic and materials chemistry. Crystal structure analysis establishes the structural arrangement of 1, revealing a butterfly-like topology with an unusual seven-coordinated Mn(II) center. Formation of this cluster is accomplished by a self-assembly process through functionalization of 1 with one μ2:η1:η1-nitrate and two μ2:η2:η1-benzoate groups via the CuII(μ2-NO3)CuII} and {CuII(μ2-O2CC6H5)MnII} linkages, respectively. Variable-temperature SQUID magnetometry revealed the coexistence of ferromagnetic and antiferromagnetic interactions in 1. The observed magnetic behavior in 1 is unexpected because of a large Cu-O-Mn angle with a value of 132.05°, indicating that the correlation between coupling constants and the structural parameters is a multifactor problem. This cluster shows excellent electrocatalytic performance for the HER attaining a current density of 10 mA/cm2 with a Tafel slope of 183 mV dec-1 at a 310 mV overpotential value. Essentially, cluster 1 shows exceptional electrochemical stability at ambient temperature, accompanied by minimal degradation of the current density as examined by chronoamperometric studies. Density functional theory calculations establish the mechanistic insight into the HER process, indicating that the CuII-OCO-MnII site is the active site for formation of molecular hydrogen.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Aditi De
- Process Engineering (EPE) Division, Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subir Maji
- Department of Chemical Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Julia Kłak
- Faculty of Chemistry, University of Wroclaw, Wroclaw 50383, Poland
| | - Subrata Kundu
- Process Engineering (EPE) Division, Central Electrochemical Research Institute, Karaikudi, Tamil Nadu 630006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| |
Collapse
|
2
|
Sk S, Bandyopadhyay S, Sarkar C, Das I, Gupta A, Sadangi M, Mondal S, Banerjee M, Vijaykumar G, Behera JN, Konar S, Mandal S, Bera M. Unraveling Multicopper [Cu 3] and [Cu 6] Clusters with Rare μ 3-Sulfato and Linear μ 2-Oxido-Bridges as Potent Antibiofilm Agents against Multidrug-Resistant Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2024; 7:2423-2449. [PMID: 38478915 DOI: 10.1021/acsabm.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this research article, two multicopper [Cu3] and [Cu6] clusters, [Cu3(cpdp)(μ3-SO4)(Cl)(H2O)2]·3H2O (1) and [Cu6(cpdp)2(μ2-O)(Cl)2(H2O)4]·2Cl (2) (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol), have been explored as potent antibacterial and antibiofilm agents. Their molecular structures have been determined by a single-crystal X-ray diffraction study, and the compositions have been established by thermal and elemental analyses, including electrospray ionization mass spectrometry. Structural analysis shows that the metallic core of 1 is composed of a trinuclear [Cu3] assembly encapsulating a μ3-SO42- group, whereas the structure of 2 represents a hexanuclear [Cu6] assembly in which two trinuclear [Cu3] motifs are exclusively bridged by a linear μ2-O2- group. The most striking feature of the structure of 2 is the occurrence of an unusual linear oxido-bridge, with the Cu3-O6-Cu3' bridging angle being 180.00°. Whereas 1 can be viewed as an example of a copper(II)-based compound displaying a rare μ3:η1:η1:η1 bridging mode of the SO42- group, 2 is the first example of any copper(II)-based compound showing an unsupported linear Cu-O-Cu oxido-bridge. Employing variable-temperature SQUID magnetometry, the magnetic susceptibility data were measured and analyzed exemplarily for 1 in the temperature range of 2-300 K, revealing the occurrence of antiferromagnetic interactions among the paramagnetic copper centers. Both 1 and 2 exhibited potent antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA BAA1717) and the clinically isolated culture of methicillin-resistant S. aureus (MRSA CI1). The mechanism of antibacterial and antibiofilm activities of these multicopper clusters was investigated by analyzing and determining the intracellular reactive oxygen species (ROS) generation, lipid peroxidation, microscopic observation of cell membrane disruption, membrane potential, and leakage of cellular components. Additionally, 1 and 2 showed a synergistic effect with commercially available antibiotics such as vancomycin with enhanced antibacterial activity. However, 1 possesses higher antibacterial, antibiofilm, and antivirulence actions, making it a potent therapeutic agent against both MRSA BAA1717 and MRSA CI1 strains.
Collapse
Affiliation(s)
- Sujan Sk
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Chandan Sarkar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Indrajit Das
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Arindam Gupta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Sadangi
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, Khurda, Bhubaneswar, Odisha 752050, India
| | - Soma Mondal
- Department of Microbiology, College of Medicine & Jawaharlal Nehru Memorial (JNM) Hospital, WBUHS, Nadia, Kalyani, West Bengal 741235, India
| | - Malabika Banerjee
- Cristália Produtos Químicos Farmacêuticos Limited, Rodovia Itapira, Sao Paulo CEP 13970-970, Brazil
| | - Gonela Vijaykumar
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, Khurda, Bhubaneswar, Odisha 752050, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| |
Collapse
|
3
|
Sen B, Paul S, Krukowski P, Kundu D, Das S, Banerjee P, Mal Ecka M, Abbas SJ, Ali SI. CuAs 2O 4: Design, Hydrothermal Synthesis, Crystal Structure, Photocatalytic Dye Degradation, Hydrogen Evolution Reaction, Knoevenagel Condensation Reaction, and Thermal Studies. Inorg Chem 2024; 63:2919-2933. [PMID: 38297514 DOI: 10.1021/acs.inorgchem.3c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
CuAs2O4 has been explored as a heterogeneous catalyst in the fields of photocatalysis, electrocatalysis, and solvent-free organic transformation reactions. The homogeneity has been successfully attained for the first time by designing a pH-assisted hydrothermal synthesis technique. Single-crystal X-ray diffraction studies reveal that no phase transition has been observed by lowering the temperature up to 103 K with no existence of satellite reflections. The crystal structure exhibits tetragonal symmetry with space group P42/mbc and consists of [CuO6] octahedra and [AsO3E] tetrahedra (E represents the stereochemically active lone pair). Structural investigation shows a cylindrical void inside the structure, which could lead to interesting physical and chemical properties. The photocatalytic dye degradation efficiency with methylene blue (MB) showed ∼100% degradation, though the degradation efficiency increased by 2-fold with the addition of 6% H2O2. The reusability of the catalyst up to the 10th cycle with ∼35% MB dye degradation has been established. It can exhibit HER activity with a low overpotential of 165 mV with respect to RHE to attain the current density of j = 10 mA cm-2. SEM and TEM revealed rod-shaped particles, which supported the large number of catalytic active sites. The structural consistency of the catalyst after photodegradation and HER studies is confirmed by the PXRD pattern. XPS confirms the oxidation state of Cu and As in the compound. The catalytic activity toward the Knoevenagel condensation reaction at moderate temperature under solvent-free condition is also studied. TG-DTA shows an endothermic minimum (Tmin) at 436 °C due to the mass loss of As2O3.
Collapse
Affiliation(s)
- Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Pawel Krukowski
- Department of Solid State Physics, University of Lodz, Lodz 90-236, Poland
| | - Debojyoti Kundu
- CSIR- Central Mechanical Engineering Research Institute (CMERI), Durgapur, West Bengal 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sangita Das
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Priyabrata Banerjee
- CSIR- Central Mechanical Engineering Research Institute (CMERI), Durgapur, West Bengal 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Magdalena Mal Ecka
- Department of Physical Chemistry, University of Lodz, Lodz 90-236, Poland
| | - Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| |
Collapse
|
4
|
Sarkar C, Sk S, Majumder A, Haldar S, Vijaykumar G, Bera M. Synthesis, structure, thermal and magnetic properties of new tetranuclear copper(II) complex supported by multidentate ligand and glutarate functionality. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Majumder A, Sk S, Das A, Vijaykumar G, Sahoo MK, Behera JN, Bera M. Ancillary-Ligand-Assisted Variation in Nuclearities Leading to the Formation of Di-, Tri-, and Tetranuclear Copper(II) Complexes with Multifaceted Carboxylate Coordination Chemistry. ACS OMEGA 2022; 7:39985-39997. [PMID: 36385820 PMCID: PMC9647862 DOI: 10.1021/acsomega.2c04627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The self-assembly of a carboxylate-based dinucleating ligand, N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol (H3cpdp), and copper(II) ions in the presence of various exogenous ancillary ligands results in the formation of the new dinuclear complex [Cu2(cpdp)(μ-Hisophth)]4·2H2isophth·21H2O (1), trinuclear complex [Cu3(Hcpdp)(Cl)4] (2), and tetranuclear complex [Cu4(cpdp)(μ-Hphth)(μ4-phth)(piconol)(Cl)2]·3H2O (3) (H2phth = phthalic acid; H2isophth = isophthalic acid; piconol = 2-pyridinemethanol; Cl- = chloride). In methanol-water, the reaction of H3cpdp with CuCl2·2H2O at room temperature leads to the formation of 2. On the other hand, 1 and 3 have been obtained by carrying out the reaction of H3cpdp with CuCl2·2H2O/m-C6H4(CO2Na)2 and CuCl2·2H2O/o-C6H4(CO2Na)2/piconol, respectively, in methanol-water in the presence of NaOH at ambient temperature. All three complexes have been characterized by elemental analysis, molar electrical conductivity and magnetic moment measurements, FTIR, UV-vis spectroscopy, and PXRD, including single-crystal X-ray structural analyses. The molecular structure of 1 is based on a μ-alkoxide and μ-isophthalate-bridged dimeric [Cu2] core; the structure of 2 represents a trimeric [Cu3] core in which a μ-alcohol-bridged dinuclear [Cu2] unit is exclusively coupled with a [CuCl2] species by two μ:η1:η1-syn-anti carboxylate groups forming a triangular motif; the structure of 3 embodies a tetrameric [Cu4] core, with two copper(II) ions in a distorted-octahedral coordination environment, one copper(II) ion in a distorted-trigonal-bipyramidal coordination environment, and the other copper(II) ion in a square-planar coordination environment. In fact, 2 and 3 represent rare examples of copper(II)-based multinuclear complexes showing outstanding features of rich coordination chemistry: (i) using a symmetrical dinucleating ligand, trinuclear complex 2 is generated with four- and five-coordination environments around copper(II) ions; (ii) the unsymmetrical tetranuclear complex 3 is obtained by using the same ligand with four-, five- and six-coordination environments around copper(II) ions; (iii) tetracopper(II) complex 3 shows four different bridging modes of carboxylate groups simultaneously such as μ:η2, μ:η1:η1, μ3:η2:η1:η1, and μ4:η1:η1:η1:η1, the μ4:η1:η1:η1:η1 mode of phthalate being unprecedented. The formation of these [Cu2], [Cu3], and [Cu4] complexes can be controlled by changing the exogenous ancillary ligands and pH of the reaction solutions, thus allowing an effective tuning of the self-assembly. The magnetic susceptibility measurements suggest that the copper centers in all three complexes are antiferromagnetically coupled. The thermal properties of 1-3 have been investigated by thermogravimetric and differential thermal analytical (TGA and DTA) techniques, indicating that the decomposition of all three complexes proceeds via multistep processes.
Collapse
Affiliation(s)
- Avishek Majumder
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sujan Sk
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Arpan Das
- Department
of Chemical Sciences, Indian Institute of
Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Gonela Vijaykumar
- Department
of Chemical Sciences, Indian Institute of
Science Education & Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Malaya K. Sahoo
- School
of Chemical Sciences, National Institute
of Science Education & Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Khurda, Odisha 752050, India
| | - J. N. Behera
- School
of Chemical Sciences, National Institute
of Science Education & Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Khurda, Odisha 752050, India
| | - Manindranath Bera
- Department
of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
6
|
Majumder A, Dutta N, Sk S, Bera M. Synthesis, characterization and arsenate binding events of new mononuclear copper(II) complexes. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Antonov AA, Nikolaev AI. Production of Analogs of the Rare Minerals Sampleite and Lavendulan as Potential Functional Materials. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2022. [DOI: 10.1134/s0040579522040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Haiduc I. Inverse coordination complexes with oxoanions as centroligands. A review of topologies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Selmi A, Omezzine M, Mahmoudi RM, Puschmann H, Ennaceur N. Structural, Spectroscopic, Antiferromagnetic and in vitro antiproliferative studies of copper (II) pyrophosphate complex against Human breast cancer cell lines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Dutta N, Haldar S, Majumder A, Vijaykumar G, Carrella L, Bera M. Synthesis, structure and properties of a novel self-assembled tetranuclear copper(II) complex derived from carboxylate-based multidentate ligand. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Majumder A, Dutta N, Haldar S, Das A, Carrella L, Bera M. Aromatic dicarboxylate incorporated new di- and tetranuclear cobalt(II) complexes: Synthetic and structural aspects, and evaluation of properties and catalytic activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Haldar S, Dutta N, Vijaykumar G, Das A, Carrella L, Oliver A, Bera M. Synthesis, structure and properties of new heterometallic octanuclear Li2Na2Cu4 and decanuclear Li2Zn8 complexes. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Villalobos J, González-Flores D, Klingan K, Chernev P, Kubella P, Urcuyo R, Pasquini C, Mohammadi MR, Smith RDL, Montero ML, Dau H. Structural and functional role of anions in electrochemical water oxidation probed by arsenate incorporation into cobalt-oxide materials. Phys Chem Chem Phys 2019; 21:12485-12493. [DOI: 10.1039/c9cp01754b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arsenate ions are incorporated in amorphous cobalt oxide catalysts at the periphery of the lattice or substituting cobalt ions.
Collapse
Affiliation(s)
- Javier Villalobos
- Centro de Electroquímica y Energía Química (CELEQ) and Escuela de Química
- Universidad de Costa Rica
- San José
- Costa Rica
| | - Diego González-Flores
- Centro de Electroquímica y Energía Química (CELEQ) and Escuela de Química
- Universidad de Costa Rica
- San José
- Costa Rica
- Department of Physics
| | | | - Petko Chernev
- Department of Physics
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Paul Kubella
- Department of Physics
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Roberto Urcuyo
- Centro de Electroquímica y Energía Química (CELEQ) and Escuela de Química
- Universidad de Costa Rica
- San José
- Costa Rica
| | - Chiara Pasquini
- Department of Physics
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | | | | | - Mavis L. Montero
- Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA) and Escuela de Química
- Universidad de Costa Rica
- San José
- Costa Rica
| | - Holger Dau
- Department of Physics
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
14
|
Dutta N, Haldar S, Vijaykumar G, Paul S, Chattopadhyay AP, Carrella L, Bera M. Phosphatase-like Activity of Tetranuclear Iron(III) and Zinc(II) Complexes. Inorg Chem 2018; 57:10802-10820. [PMID: 30130107 DOI: 10.1021/acs.inorgchem.8b01441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nityananda Dutta
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| | - Shobhraj Haldar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| | - Gonela Vijaykumar
- Department of Chemical Sciences, Indian Institute of Science Education & Research Kolkata, Mohanpur, West Bengal-741246, India
| | - Suvendu Paul
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| | | | - Luca Carrella
- Institut fur Anorganische Chemie und Analytische Chemie, Johannes-Gutenberg Universitat Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| |
Collapse
|
15
|
Haldar S, Vijaykumar G, Carrella L, Musie GT, Bera M. Structure and properties of a novel staircase-like decanuclear [CuII10] cluster supported by carbonate and carboxylate bridges. NEW J CHEM 2018. [DOI: 10.1039/c7nj03714g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel staircase-like decanuclear copper(ii) cluster composed of a pair of [CuII5] pentameric units that are linked together exclusively by two μ2:η2:η1carbonate ligands is reported. The cluster also shows a rare μ3:η2:η1:η1bridging coordination mode of benzoate groups of the ligand.
Collapse
Affiliation(s)
| | - Gonela Vijaykumar
- Department of Chemical Sciences
- Indian Institute of Science Education & Research Kolkata
- Mohanpur
- India
| | - Luca Carrella
- Institut fur Anorganische Chemie und Analytische Chemie
- Johannes-Gutenberg Universität Mainz
- D-55128 Mainz
- Germany
| | - Ghezai T. Musie
- Department of Chemistry
- The University of Texas at San Antonio
- San Antonio
- USA
| | | |
Collapse
|