1
|
Karale UB, Shinde A, Gaikwad VR, Kalari S, Gourishetti K, Radhakrishnan M, Poornachandra Y, Amanchy R, Chakravarty S, Andugulapati SB, Rode HB. Iron mediated reductive cyclization/oxidation for the generation of chemically diverse scaffolds: An approach in drug discovery. Bioorg Chem 2023; 139:106698. [PMID: 37418784 DOI: 10.1016/j.bioorg.2023.106698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023]
Abstract
Chemically diverse scaffolds represent a main source of biologically important starting points in drug discovery. Herein, we report the development of such diverse scaffolds from nitroarene/ nitro(hetero)arenes using a key synthetic strategy. In a pilot-scale study, the synthesis of 10 diverse scaffolds was achieved. The 1,7-phenanthroline, thiazolo[5,4-f]quinoline, 2,3-dihydro-1H-pyrrolo[2,3-g]quinoline, pyrrolo[3,2-f]quinoline, 1H-[1,4]oxazino[3,2-g]quinolin-2(3H)-one, [1,2,5]oxadiazolo[3,4-h]quinoline, 7H-pyrido[2,3-c]carbazole, 3H-pyrazolo[4,3-f]quinoline, pyrido[3,2-f]quinoxaline were obtained from nitro hetero arenes in ethanol using iron-acetic acid treatment followed by reaction under oxygen atmosphere. This diverse library is compliant with the rule of five for drug-likeness. The mapping of chemical space represented by these scaffolds revealed a significant contribution to the underrepresented chemical diversity. Crucial to the development of this approach was the mapping of biological space covered by these scaffolds which revealed neurotropic and prophylactic anti-inflammatory activities. In vitro, neuro-biological assays revealed that compounds 14a and 15a showed excellent neurotropic potential and neurite growth compared to controls. Further, anti-inflammatory assays (in vitro and in vivo models) exhibited that Compound 16 showed significant anti-inflammatory activity by attenuating the LPS-induced TNF-α and CD68 levels by modulating the NFkB pathway. In addition, treatment with compound 16 significantly ameliorated the LPS-induced sepsis conditions, and pathological abnormalities (in lung and liver tissues) and improved the survival of the rats compared to LPS control. Owing to their chemical diversity along with bioactivities, it is envisaged that new quality pre-clinical candidates will be generated in the above therapeutic areas using identified leads.
Collapse
Affiliation(s)
- Uttam B Karale
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Akash Shinde
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Vikas R Gaikwad
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Saradhi Kalari
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Karthik Gourishetti
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Mydhili Radhakrishnan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Yedla Poornachandra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Ramars Amanchy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Sumana Chakravarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India; Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Haridas B Rode
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
2
|
Gallas-Lopes M, Bastos LM, Benvenutti R, Panzenhagen AC, Piato A, Herrmann AP. Systematic review and meta-analysis of 10 years of unpredictable chronic stress in zebrafish. Lab Anim (NY) 2023; 52:229-246. [PMID: 37709998 DOI: 10.1038/s41684-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
The zebrafish (Danio rerio) is a model animal that is being increasingly used in neuroscience research. A decade ago, the first study on unpredictable chronic stress (UCS) in zebrafish was published, inspired by protocols established for rodents in the early 1980s. Since then, several studies have been published by different groups, in some cases with conflicting results. Here we conducted a systematic review to identify studies evaluating the effects of UCS in zebrafish and meta-analytically synthetized the data of neurobehavioral outcomes and relevant biomarkers. Literature searches were performed in three databases (PubMed, Scopus and Web of Science) with a two-step screening process based on inclusion/exclusion criteria. The included studies underwent extraction of qualitative and quantitative data, as well as risk-of-bias assessment. Outcomes of included studies (n = 38) were grouped into anxiety/fear-related behavior, locomotor function, social behavior or cortisol level domains. UCS increased anxiety/fear-related behavior and cortisol levels while decreasing locomotor function, but a significant summary effect was not observed for social behavior. Despite including a substantial number of studies, the high heterogeneity and the methodological and reporting problems evidenced in the risk-of-bias analysis made it difficult to assess the internal validity of most studies and the overall validity of the model. Our review thus evidences the need to conduct well-designed experiments to better evaluate the effects of UCS on diverse behavioral patterns displayed by zebrafish.
Collapse
Affiliation(s)
- Matheus Gallas-Lopes
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo M Bastos
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Radharani Benvenutti
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alana C Panzenhagen
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana P Herrmann
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil.
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|