1
|
Sunami H, Shimizu Y, Nakasone H, Futenma N, Denda J, Yokota S, Kishimoto H, Makita M, Nishikawa Y. In vivo imaging of adipose-derived stem cell sheets on biodegradable nonwoven fabric using X-ray CT. Biomed Eng Online 2024; 23:133. [PMID: 39731095 DOI: 10.1186/s12938-024-01324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND A biodegradable nonwoven fabric that can be used to extract adipose-derived stem cells (ADSCs) from adipose tissue slices was developed, which were cultured rapidly without enzymatic treatment. The extracted and cultured ADSCs remain on the nonwoven fabric and form a thick cell sheet. The aim was to use the thick cell sheet as a treatment by transplanting it into the living body. In addition, the expectation was that it will be possible to observe the cell sheet in the living body using X-ray computed tomography (CT) because the nonwoven fabric used to produce the cell sheet contains 50% (by weight) hydroxyapatite. RESULTS Thick cell sheets of ADSCs supported by two layers of nonwoven fabric were cut to size and transplanted into the cheeks of rats. No health damage was observed in the rats in which the cell sheets were implanted, except for one in which the surgery appeared to have failed. X-ray CT imaging showed that the fabric of the implanted cell sheet biodegraded over 12 weeks. Changes in the position, shape, and size of the cell sheet within the rat's body were tracked by X-ray CT. The thick cell sheets, which can be easily produced by simply seeding tissue slices, can be cut into appropriate shapes and transplanted safely, and it was confirmed that they slowly biodegraded when transplanted into the rats' bodies. CONCLUSIONS We demonstrated not only that the thick ADSC sheets can be transplanted successfully into animals, but also that the transplanted sheets can be observed in vivo by X-ray CT, which also allows changes in the ADSC sheets to be tracked. The results suggest that the biodegradable nonwoven fabric will be a useful transplantation device to ensure cell engraftment throughout the affected area, and facilitate monitoring of the transplant's subsequent status. We expect that this transplantation device will promote the development of regenerative therapy.
Collapse
Affiliation(s)
- Hiroshi Sunami
- Faculty of Medicine, University of the Ryukyus, Nishihara-cho, Japan.
| | - Yusuke Shimizu
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
- University of the Ryukyus Hospital, Nishihara-cho, Japan
| | | | - Naoko Futenma
- University of the Ryukyus Hospital, Nishihara-cho, Japan
| | - Junko Denda
- Faculty of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Sayaka Yokota
- University of the Ryukyus Hospital, Nishihara-cho, Japan
| | - Hidehiro Kishimoto
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | | | | |
Collapse
|
2
|
Allcock B, Wei W, Goncalves K, Hoyle H, Robert A, Quelch-Cliffe R, Hayward A, Cooper J, Przyborski S. Impact of the Physical Cellular Microenvironment on the Structure and Function of a Model Hepatocyte Cell Line for Drug Toxicity Applications. Cells 2023; 12:2408. [PMID: 37830622 PMCID: PMC10572302 DOI: 10.3390/cells12192408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
It is widely recognised that cells respond to their microenvironment, which has implications for cell culture practices. Growth cues provided by 2D cell culture substrates are far removed from native 3D tissue structure in vivo. Geometry is one of many factors that differs between in vitro culture and in vivo cellular environments. Cultured cells are far removed from their native counterparts and lose some of their predictive capability and reliability. In this study, we examine the cellular processes that occur when a cell is cultured on 2D or 3D surfaces for a short period of 8 days prior to its use in functional assays, which we term: "priming". We follow the process of mechanotransduction from cytoskeletal alterations, to changes to nuclear structure, leading to alterations in gene expression, protein expression and improved functional capabilities. In this study, we utilise HepG2 cells as a hepatocyte model cell line, due to their robustness for drug toxicity screening. Here, we demonstrate enhanced functionality and improved drug toxicity profiles that better reflect the in vivo clinical response. However, findings more broadly reflect in vitro cell culture practises across many areas of cell biology, demonstrating the fundamental impact of mechanotransduction in bioengineering and cell biology.
Collapse
Affiliation(s)
- Benjamin Allcock
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Kirsty Goncalves
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Henry Hoyle
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Alisha Robert
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Rebecca Quelch-Cliffe
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Adam Hayward
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Jim Cooper
- European Collection of Authenticated Cell Cultures, Salisbury SP4 0JG, UK
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
- Reprocell Europe Ltd., Glasgow G20 0XA, UK
| |
Collapse
|
3
|
Yamazaki M, Onodera K, Iijima K. Surface modification of silica nonwoven fabrics for osteogenesis of bone marrow-derived mesenchymal stem cells. J Biosci Bioeng 2022; 134:541-548. [PMID: 36171160 DOI: 10.1016/j.jbiosc.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Silica nonwoven fabrics (SNFs) with high mechanical strength and porosity are known to exhibit high cell proliferation and osteogenic differentiation potential of mesenchymal stem cells (MSCs) by morphologically mimicking the extracellular matrix (ECM). To further improve the osteoinductive ability of SNFs, it could be effective to increase the interaction between MSCs and ECM components because exogenous ECM components seem to modulate the fate of MSCs differentiation. In this study, we developed immobilization methods for ECM components, such as collagen, fibronectin, and chondroitin sulphate C on SNFs, to improve cell-matrix interactions and examined their suitability for bone tissue regeneration. Collagen and fibronectin were immobilized via physical adsorption and chondroitin sulphate C was also immobilized by the layer-by-layer method combined with chitosan on SNF surfaces to maintain the high porosity of SNFs. The treated SNFs were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. In osteogenic differentiation culture, modified SNFs showed significantly increased expression of osteogenic differentiation marker genes compared to unmodified SNFs. These results suggest that the present methods improve cell-matrix interactions and enhance the cellular functions of MSCs. We are convinced that these simple modification techniques for ECM components are effective in functionalizing various 3D fabric scaffolds possessing hydrophilic groups.
Collapse
Affiliation(s)
- Makoto Yamazaki
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kodai Onodera
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazutoshi Iijima
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
4
|
Fabricating a Novel Three-Dimensional Skin Model Using Silica Nonwoven Fabrics (SNF). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silica nonwoven fabrics (SNF) prepared using electrospinning have high biocompatibility, thermal stability, and porosity that allows growing three-dimensional culture of cells. In this study, we used SNF to construct a three-dimensional artificial skin model consisting of epidermal and dermal layers with immortalized and primary human cell lines, creating a novel model that minimizes tissue shrinkage. As a result, SNF dermal/epidermal models have enhanced functions in the basement membrane, whereas Collagen dermal/epidermal models have advantages in keratinization and barrier functions. The SNF dermal/epidermal model with mechanical strength formed a basement membrane mimicking structure, suggesting the construction of a stable skin model. Next, we constructed three-dimensional skin models consisting of SNF and collagen. In the combination models, the expression of genes in the basement membrane was significantly increased compared with that in the Collagen dermal/epidermal model, and the gene for keratinization was increased compared with that in the SNF dermal/epidermal model. We believe that the combination model can be a biomimetic model that takes advantage of both SNF and collagen and can be applied to various basic research. Our new skin model is expected to be an alternative method for skin testing to improve the shrinkage of the collagen matrix gel.
Collapse
|
5
|
Zhou J, Nie Y, Jin C, Zhang JXJ. Engineering Biomimetic Extracellular Matrix with Silica Nanofibers: From 1D Material to 3D Network. ACS Biomater Sci Eng 2022; 8:2258-2280. [PMID: 35377596 DOI: 10.1021/acsbiomaterials.1c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomaterials at nanoscale is a fast-expanding research field with which extensive studies have been conducted on understanding the interactions between cells and their surrounding microenvironments as well as intracellular communications. Among many kinds of nanoscale biomaterials, mesoporous fibrous structures are especially attractive as a promising approach to mimic the natural extracellular matrix (ECM) for cell and tissue research. Silica is a well-studied biocompatible, natural inorganic material that can be synthesized as morpho-genetically active scaffolds by various methods. This review compares silica nanofibers (SNFs) to other ECM materials such as hydrogel, polymers, and decellularized natural ECM, summarizes fabrication techniques for SNFs, and discusses different strategies of constructing ECM using SNFs. In addition, the latest progress on SNFs synthesis and biomimetic ECM substrates fabrication is summarized and highlighted. Lastly, we look at the wide use of SNF-based ECM scaffolds in biological applications, including stem cell regulation, tissue engineering, drug release, and environmental applications.
Collapse
Affiliation(s)
- Junhu Zhou
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
6
|
Iijima K, Otsuka H. Cell Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2020; 7:E119. [PMID: 33007995 PMCID: PMC7711861 DOI: 10.3390/bioengineering7040119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, well-known surgical procedures for bone defects are classified into four types: (1) autogenous bone graft transplantation, (2) allogeneic bone graft transplantation, (3) xenogeneic bone graft transplantation, and (4) artificial bone graft transplantation. However, they are often risky procedures and related to postoperative complications. As an alternative, tissue engineering to regenerate new bone often involves the use of mesenchymal stem cells (MSCs), derived from bone marrow, adipose tissues, and so on, which are cultured into three-dimensional (3D) scaffolds to regenerate bone tissue by osteoinductive signaling. In this manuscript, we provide an overview of recent treatment of bone defects and the studies on the creation of cell scaffolds for bone regeneration. Bone regeneration from bone marrow-derived mesenchymal stem cells using silica nonwoven fabric by the authors' group were provided. Potential application and future direction of the present systems were also described.
Collapse
Affiliation(s)
- Kazutoshi Iijima
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan;
| | - Hidenori Otsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
7
|
Soltanyzadeh M, Salimi A, Halabian R, Ghollasi M. The effect of female sex steroid hormones on osteogenic differentiation of endometrial stem cells. Mol Biol Rep 2020; 47:3663-3674. [PMID: 32335804 DOI: 10.1007/s11033-020-05461-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
Bone regeneration is a significant and crucial health issue worldwide. Tissue bioengineering has shown itself to be the best substitute for common clinical treatment of bone loss. The suitable cell source is human endometrial stem cells (hEnSCs) which have several suitable characteristics for this approach. Since sex steroid hormones are involved in expansion and conservation of the skeleton, the effect of two sex steroid hormones known as estrogen (17-β estradiol) and progesterone on osteogenic differentiation of hEnSCs were examined. For this purpose, hEnSCs were treated with 17-β estradiol and progesterone separately (1 × 10-6 M) and simultaneously (1 × 10-7 M). Osteogenic differentiation tests including measurement of total mineral calcium content, Alizarin Red staining, the quantitative expression levels of some osteogenic markers by Real-time RT-PCR, and immunofluorescence staining were performed at 7 and 14 days of differentiation. To exhibit the morphology of the cells in osteogenic and culture medium, the hEnSCs were stained with Acridine Orange (AO) solution. In this research, MTT assay and AO staining revealed progesterone and 17-β estradiol increase the proliferation of hEnSCs in a dose-dependent manner. Furthermore, the results of calcium content analysis, Real-time RT-PCR assay, and all tests of differentiation staining have shown that 17-β estradiol and progesterone cannot induce hEnSCs' osteogenic differentiation. In conclusion, it is indicated that 17-β estradiol and progesterone do not have positive effects on hEnSCs' osteogenic differentiation in vitro.
Collapse
Affiliation(s)
- Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
8
|
Ishikawa S, Iijima K, Sasaki K, Kawabe M, Osawa S, Otsuka H. Silica-Based Nonwoven Fiber Fabricated by Electrospinning to Promote Fibroblast Functions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shohei Ishikawa
- Graduate School of Sciences, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kazutoshi Iijima
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | - Kohei Sasaki
- Japan Vilene Company Ltd., 7 Kita-Tone, Koga, Ibaraki 306-0213, Japan
| | - Masaaki Kawabe
- Japan Vilene Company Ltd., 7 Kita-Tone, Koga, Ibaraki 306-0213, Japan
| | - Shigehito Osawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hidenori Otsuka
- Graduate School of Sciences, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|