1
|
Khan P, Brennan G, Tofail SAM, Liu N, Silien C. Polarization Spin Inversion with Nonlinear Plasmon Scattering. ACS OMEGA 2025; 10:4607-4613. [PMID: 39959038 PMCID: PMC11822691 DOI: 10.1021/acsomega.4c09135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 02/18/2025]
Abstract
We report on circularly polarized Gaussian beam spin angular momenta that can be inverted upon scattering with quadrupole plasmon modes. The conditions for such conversion are met with high-angle collection, dark-field scattering microscopy on spherical plasmonic particles. We further report that silvered nanoporous silica microparticles exhibit a strong nonlinearity in their scattering, specifically a reverse saturated scattering (RSS), when exposed to high laser power densities on the sample of ca. 5 GW/cm2. Handedness conversion by these microparticles is only observed at wavelengths tuned to the quadrupole modes. Conversely, the scattering remains linear, and the handedness is unchanged, when the same particles are illuminated with low laser power densities of ca. 10 W/cm2. We infer that RSS tuned to the quadrupole modes sufficiently enhances their contribution so that they dominate the high-angle scattering, thereby justifying the light spin inversion. Moreover, the addition of a self-assembled monolayer of ethynylaniline (EA) on the microparticles results in handedness conversion for both low and high incident power, as expected from preferable dipole damping and plasmon mode red shift. This demonstrates that optical nonlinearity in scattering can be exploited for polarization tuning in plasmonic metamaterials.
Collapse
Affiliation(s)
| | | | - Syed A. M. Tofail
- Department of Physics and
Bernal Institute, University of Limerick, Castletroy, Co., Limerick V94 T9PX, Ireland
| | - Ning Liu
- Department of Physics and
Bernal Institute, University of Limerick, Castletroy, Co., Limerick V94 T9PX, Ireland
| | - Christophe Silien
- Department of Physics and
Bernal Institute, University of Limerick, Castletroy, Co., Limerick V94 T9PX, Ireland
| |
Collapse
|
2
|
Khan P, Brennan G, Li Z, Al Hassan L, Rice D, Gleeson M, Mani AA, Tofail SAM, Xu H, Liu N, Silien C. Circular Polarization Conversion in Single Plasmonic Spherical Particles. NANO LETTERS 2022; 22:1504-1510. [PMID: 35112876 PMCID: PMC8880373 DOI: 10.1021/acs.nanolett.1c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Temporal and spectral behaviors of plasmons determine their ability to enhance the characteristics of metamaterials tailored to a wide range of applications, including electric-field enhancement, hot-electron injection, sensing, as well as polarization and angular momentum manipulation. We report a dark-field (DF) polarimetry experiment on single particles with incident circularly polarized light in which gold nanoparticles scatter with opposite handedness at visible wavelengths. Remarkably, for silvered nanoporous silica microparticles, the handedness conversion occurs at longer visible wavelengths, only after adsorption of molecules on the silver. Finite element analysis (FEA) allows matching the circular polarization (CP) conversion to dominant quadrupolar contributions, determined by the specimen size and complex susceptibility. We hypothesize that the damping accompanying the adsorption of molecules on the nanostructured silver facilitates the CP conversion. These results offer new perspectives in molecule sensing and materials tunability for light polarization conversion and control of light spin angular momentum at submicroscopic scale.
Collapse
Affiliation(s)
- Pritam Khan
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Grace Brennan
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Zhe Li
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
- School
of Physics and Technology, Institute for Advanced Studies and Center
for Nanoscience and Nanotechnology, Wuhan
University, Wuhan, 430072, China
| | - Luluh Al Hassan
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Daragh Rice
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Matthew Gleeson
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Aladin A. Mani
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Syed A. M. Tofail
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Hongxing Xu
- School
of Physics and Technology, Institute for Advanced Studies and Center
for Nanoscience and Nanotechnology, Wuhan
University, Wuhan, 430072, China
| | - Ning Liu
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Christophe Silien
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
3
|
Li J, Xu Y, Tian L, Yan Y, Niu L, Li X, Zhang Z. Silver Nanoparticle-Decorated Silica Nanospheres and Arrays as Potential Substrates for Surface-Enhanced Raman Scattering. ACS OMEGA 2021; 6:32879-32887. [PMID: 34901638 PMCID: PMC8655890 DOI: 10.1021/acsomega.1c04874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/18/2021] [Indexed: 05/10/2023]
Abstract
Poly(vinylpyrrolidone) (PVP) was used as both a modifier and reductant to in situ deposit silver nanoparticles (denoted Ag NPs) on the surface of silica nanospheres (nanosilica or nano-SiO2), affording Ag-decorated nanosilica (denoted SiO2@Ag). The as-obtained SiO2@Ag composite can form silver nanoparticle-decorated silica nanosphere arrays (denoted SiO2@Ag arrays) via evaporation-induced self-assembly. The as-prepared SiO2@Ag composite and SiO2@Ag array were used as the SERS substrates to measure the Raman signals of the dilute solutions of rhodamine 6G (denoted R6G), an organic dye that is a potential pollutant to the environment. The findings indicate that the as-prepared SiO2@Ag composite and SiO2@Ag array as potential SERS substrates simultaneously exhibit a high degree of metal coverage and small size of Ag NPs as well as good stability and abundant "hot spots", which contributes to their desired Raman enhancement capacities. For the detection of trace R6G, they provide a limit of detection of as low as 10-9-10-11 M as well as good reproducibility, showing promising potential for monitoring chemical and biological molecules.
Collapse
Affiliation(s)
- Junfang Li
- Engineering
Research Center for Nanomaterials, Henan
University, Kaifeng 475004, P. R. China
| | - Yanfang Xu
- Engineering
Research Center for Nanomaterials, Henan
University, Kaifeng 475004, P. R. China
| | - Lulu Tian
- Engineering
Research Center for Nanomaterials, Henan
University, Kaifeng 475004, P. R. China
| | - Yibo Yan
- Engineering
Research Center for Nanomaterials, Henan
University, Kaifeng 475004, P. R. China
| | - Liyong Niu
- Engineering
Research Center for Nanomaterials, Henan
University, Kaifeng 475004, P. R. China
- Engineering
Research Center for Nanomaterials Co. Ltd., Henan University, Jiyuan 459000, P. R. China
| | - Xiaohong Li
- Engineering
Research Center for Nanomaterials, Henan
University, Kaifeng 475004, P. R. China
- Engineering
Research Center for Nanomaterials Co. Ltd., Henan University, Jiyuan 459000, P. R. China
| | - Zhijun Zhang
- Engineering
Research Center for Nanomaterials, Henan
University, Kaifeng 475004, P. R. China
- Engineering
Research Center for Nanomaterials Co. Ltd., Henan University, Jiyuan 459000, P. R. China
| |
Collapse
|
4
|
Mesoporous One-Component Gold Microshells as 3D SERS Substrates. BIOSENSORS-BASEL 2021; 11:bios11100380. [PMID: 34677336 PMCID: PMC8533941 DOI: 10.3390/bios11100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful analytical tool for label-free analysis that has found a broad spectrum of applications in material, chemical, and biomedical sciences. In recent years, a great interest has been witnessed in the rational design of SERS substrates to amplify Raman signals and optionally allow for the selective detection of analytes, which is especially essential and challenging for biomedical applications. In this study, hard templating of noble metals is proposed as a novel approach for the design of one-component tailor-made SERS platforms. Porous Au microparticles were fabricated via dual ex situ adsorption of Au nanoparticles and in situ reduction of HAuCl4 on mesoporous sacrificial microcrystals of vaterite CaCO3. Elimination of the microcrystals at mild conditions resulted in the formation of stable mesoporous one-component Au microshells. SERS performance of the microshells at very low 0.4 µW laser power was probed using rhodamine B and bovine serum albumin showing enhancement factors of 2 × 108 and 8 × 108, respectively. The proposed strategy opens broad avenues for the design and scalable fabrication of one-component porous metal particles that can serve as superior SERS platforms possessing both excellent plasmonic properties and the possibility of selective inclusion of analyte molecules and/or SERS nanotags for highly specific SERS analysis.
Collapse
|
5
|
Mei R, Wang Y, Yu Q, Yin Y, Zhao R, Chen L. Gold Nanorod Array-Bridged Internal-Standard SERS Tags: From Ultrasensitivity to Multifunctionality. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2059-2066. [PMID: 31867956 DOI: 10.1021/acsami.9b18292] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bimetallic gold core-silver shell (Au@Ag) surface-enhanced Raman scattering (SERS) tags draw broad interest in the fields of biological and environmental analysis. In reported tags, silver coating tended to smooth the surface and merge the original hotspot of Au cores, which was disadvantageous to signal enhancement from the aspect of surface topography. Herein, we developed gold nanorod (AuNR)-bridged Au@Ag SERS tags with uniform three-dimensional (3D) topography for the first time. This unique structure was achieved by selecting waxberry-like Au nanoparticles (NPs) as cores, which were capped by vertically oriented AuNR arrays. Upon selective surface blocking with thiol-ligands, Ag NPs were controlled to anisotropically grow on the tips of the AuNRs, producing high-density homo- (Ag-Ag) and hetero- (Au-Ag) hotspots in a single NP. The 3D hotspots rendered this NP extraordinary SERS enhancement ability (an analytical enhancement factor of 3.4 × 106) 30 times higher than the counterpart with a smooth surface, realizing signal detection from a single NP. More importantly, multiplexing signals ("blank" or multiplex "internal standard") can be achieved by simply changing thiol-ligands, as exemplified in the synthesis of NPs with 8 signatures. Furthermore, the multifunctionality has been demonstrated in living cell/in vivo imaging, photothermal therapy, and SERS substrates for ratiometric quantitative analysis, relying on the inherent internal standard signal. The prepared Au@Ag NPs have great potential as standard tools in many SERS-related fields.
Collapse
Affiliation(s)
- Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Qian Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Yingchao Yin
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai 264005 , China
| | - Rongfang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
- College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China
- Center for Ocean Mega-Science , Chinese Academy of Sciences , Qingdao 266071 , China
| |
Collapse
|