1
|
Eatson J, Bauernfeind S, Midtvedt B, Ciarlo A, Menath J, Pesce G, Schofield AB, Volpe G, Clegg PS, Vogel N, Buzza DMA, Rey M. Self-assembly of defined core-shell ellipsoidal particles at liquid interfaces. J Colloid Interface Sci 2025; 683:435-446. [PMID: 39740560 DOI: 10.1016/j.jcis.2024.12.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
HYPOTHESIS Ellipsoidal particles confined at liquid interfaces exhibit complex self-assembly due to quadrupolar capillary interactions, favouring either tip-to-tip or side-to-side configurations. However, predicting and controlling which structure forms remains challenging. We hypothesize that introducing a polymer-based soft shell around the particles will modulate these capillary interactions, providing a means to tune the preferred self-assembly configuration based on particle geometry and shell properties. EXPERIMENTS We fabricate core-shell ellipsoidal particles with defined aspect ratios and shell thickness through thermo-mechanical stretching. Using interfacial self-assembly experiments, we systematically explore how aspect ratio and shell thickness affect the self-assembly configurations. Monte Carlo simulations and theoretical calculations complement the experiments by mapping the phase diagram of thermodynamically preferred structures as a function of core-shell properties. FINDINGS Pure ellipsoidal particles without a shell consistently form side-to-side "chain-like" assemblies, regardless of aspect ratio. In contrast, core-shell ellipsoidal particles exhibit a transition from tip-to-tip "flower-like" arrangements to side-to-side structures as aspect ratio increases. The critical aspect ratio for this transition shifts with increasing shell thickness. Our results highlight how we can engineer the self-assembly of anisotropic particles at liquid interfaces by tuning their physicochemical properties such as aspect ratio and shell thickness, allowing the deterministic realization of distinct structural configurations.
Collapse
Affiliation(s)
- Jack Eatson
- Department of Physics and Astrophysics, G. W. Gray Centre for Advanced Materials, University of Hull, Hull HU6 7RX, United Kingdom
| | - Susann Bauernfeind
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK; Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany
| | - Benjamin Midtvedt
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Antonio Ciarlo
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Johannes Menath
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany
| | - Giuseppe Pesce
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; Dipartimento di Fisica "Ettore Pancini", Università degli Studi di Napoli Federico II, Naples, Italy
| | - Andrew B Schofield
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Paul S Clegg
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Nicolas Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany
| | - D Martin A Buzza
- Department of Physics and Astrophysics, G. W. Gray Centre for Advanced Materials, University of Hull, Hull HU6 7RX, United Kingdom
| | - Marcel Rey
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK; Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany.
| |
Collapse
|
2
|
Eatson JL, Morgan SO, Horozov TS, A. Buzza DM. Programmable 2D materials through shape-controlled capillary forces. Proc Natl Acad Sci U S A 2024; 121:e2401134121. [PMID: 39163335 PMCID: PMC11363311 DOI: 10.1073/pnas.2401134121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, self-assembly has emerged as a powerful tool for fabricating functional materials. Since self-assembly is fundamentally determined by the particle interactions in the system, if we can gain full control over these interactions, it would open the door for creating functional materials by design. In this paper, we exploit capillary interactions between colloidal particles at liquid interfaces to create two-dimensional (2D) materials where particle interactions and self-assembly can be fully programmed using particle shape alone. Specifically, we consider colloidal particles which are polygonal plates with homogeneous surface chemistry and undulating edges as this particle geometry gives us precise and independent control over both short-range hard-core repulsions and longer-range capillary interactions. To illustrate the immense potential provided by our system for programming self-assembly, we use minimum energy calculations and Monte Carlo simulations to show that polygonal plates with different in-plane shapes (hexagons, truncated triangles, triangles, squares) and edge undulations of different multipolar order (hexapolar, octopolar, dodecapolar) can be used to create a rich variety of 2D structures, including hexagonal close-packed, honeycomb, Kagome, and quasicrystal lattices. Since the required particle shapes can be readily fabricated experimentally, we can use our colloidal system to control the entire process chain for materials design, from initial design and fabrication of the building blocks, to final assembly of the emergent 2D material.
Collapse
Affiliation(s)
- Jack L. Eatson
- Department of Physics and Astrophysics, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| | - Scott O. Morgan
- Department of Physics and Astrophysics, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| | - Tommy S. Horozov
- Department of Chemistry and Biochemistry, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| | - D. Martin A. Buzza
- Department of Physics and Astrophysics, George William Gray Centre for Advanced Materials, University of Hull, HullHU6 7RX, United Kingdom
| |
Collapse
|
3
|
Eatson JL, Gordon JR, Cegielski P, Giesecke AL, Suckow S, Rao A, Silvestre OF, Liz-Marzán LM, Horozov TS, Buzza DMA. Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6006-6017. [PMID: 37071832 PMCID: PMC10157885 DOI: 10.1021/acs.langmuir.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The unique behavior of colloids at liquid interfaces provides exciting opportunities for engineering the assembly of colloidal particles into functional materials. The deformable nature of fluid-fluid interfaces means that we can use the interfacial curvature, in addition to particle properties, to direct self-assembly. To this end, we use a finite element method (Surface Evolver) to study the self-assembly of rod-shaped particles adsorbed at a simple curved fluid-fluid interface formed by a sessile liquid drop with cylindrical geometry. Specifically, we study the self-assembly of single and multiple rods as a function of drop curvature and particle properties such as shape (ellipsoid, cylinder, and spherocylinder), contact angle, aspect ratio, and chemical heterogeneity (homogeneous and triblock patchy). We find that the curved interface allows us to effectively control the orientation of the rods, allowing us to achieve parallel, perpendicular, or novel obliquely orientations with respect to the cylindrical drop. In addition, by tuning particle properties to achieve parallel alignment of the rods, we show that the cylindrical drop geometry favors tip-to-tip assembly of the rods, not just for cylinders, but also for ellipsoids and triblock patchy rods. Finally, for triblock patchy rods with larger contact line undulations, we can achieve strong spatial confinement of the rods transverse to the cylindrical drop due to the capillary repulsion between the contact line undulations of the particle and the pinned contact lines of the sessile drop. Our capillary assembly method allows us to manipulate the configuration of single and multiple rod-like particles and therefore offers a facile strategy for organizing such particles into useful functional materials.
Collapse
Affiliation(s)
- Jack L Eatson
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, U.K
| | - Jacob R Gordon
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, U.K
| | | | - Anna L Giesecke
- AMO GmbH, Otto-Blumenthal-Str. 25, Aachen 52074, Germany
- University of Duisburg-Essen, Bismarckstr. 81, Duisburg 47057, Germany
| | - Stephan Suckow
- AMO GmbH, Otto-Blumenthal-Str. 25, Aachen 52074, Germany
| | - Anish Rao
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Oscar F Silvestre
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Luis M Liz-Marzán
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | - Tommy S Horozov
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, U.K
| | - D Martin A Buzza
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, U.K
| |
Collapse
|
4
|
Morgan SO, Muravitskaya A, Lowe C, Adawi AM, Bouillard JSG, Horozov TS, Stasiuk GJ, Buzza DMA. Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications. Phys Chem Chem Phys 2022; 24:11000-11013. [PMID: 35467675 DOI: 10.1039/d1cp05484h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vertically aligned monolayers of metallic nanorods have a wide range of applications as metamaterials or in surface enhanced Raman spectroscopy. However the fabrication of such structures using current top-down methods or through assembly on solid substrates is either difficult to scale up or have limited possibilities for further modification after assembly. The aim of this paper is to use the adsorption kinetics of cylindrical nanorods at a liquid interface as a novel route for assembling vertically aligned nanorod arrays that overcomes these problems. Specifically, we model the adsorption kinetics of the particle using Langevin dynamics coupled to a finite element model, accurately capturing the deformation of the liquid meniscus and particle friction coefficients during adsorption. We find that the final orientation of the cylindrical nanorod is determined by their initial attack angle when they contact the liquid interface, and that the range of attack angles leading to the end-on state is maximised when nanorods approach the liquid interface from the bulk phase that is more energetically favorable. In the absence of an external field, only a fraction of adsorbing nanorods end up in the end-on state (≲40% even for nanorods approaching from the energetically favourable phase). However, by pre-aligning the metallic nanorods with experimentally achievable electric fields, this fraction can be effectively increased to 100%. Using nanophotonic calculations, we also demonstrate that the resultant vertically aligned structures can be used as epsilon-near-zero and hyperbolic metamaterials. Our kinetic assembly method is applicable to nanorods with a range of diameters, aspect ratios and materials and therefore represents a versatile, low-cost and powerful platform for fabricating vertically aligned nanorods for metamaterial applications.
Collapse
Affiliation(s)
- S O Morgan
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - A Muravitskaya
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - C Lowe
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - A M Adawi
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - J-S G Bouillard
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| | - T S Horozov
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, UK
| | - G J Stasiuk
- Imaging Chemistry & Biology, King's College London, Strand, London WC2R 2LS, UK
| | - D M A Buzza
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
5
|
Morgan SO, Fox J, Lowe C, Adawi AM, Bouillard JSG, Stasiuk GJ, Horozov TS, Buzza DMA. Adsorption trajectories of nonspherical particles at liquid interfaces. Phys Rev E 2021; 103:042604. [PMID: 34005913 DOI: 10.1103/physreve.103.042604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
The adsorption of colloidal particles at liquid interfaces is of great importance scientifically and industrially, but the dynamics of the adsorption process is still poorly understood. In this paper we use a Langevin model to study the adsorption dynamics of ellipsoidal colloids at a liquid interface. Interfacial deformations are included by coupling our Langevin dynamics to a finite element model while transient contact line pinning due to nanoscale defects on the particle surface is encoded into our model by renormalizing particle friction coefficients and using dynamic contact angles relevant to the adsorption timescale. Our simple model reproduces the monotonic variation of particle orientation with time that is observed experimentally and is also able to quantitatively model the adsorption dynamics for some experimental ellipsoidal systems but not others. However, even for the latter case, our model accurately captures the adsorption trajectory (i.e., particle orientation versus height) of the particles. Our study clarifies the subtle interplay between capillary, viscous, and contact line forces in determining the wetting dynamics of micron-scale objects, allowing us to design more efficient assembly processes for complex particles at liquid interfaces.
Collapse
Affiliation(s)
- S O Morgan
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
| | - J Fox
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom.,School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - C Lowe
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
| | - A M Adawi
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
| | - J-S G Bouillard
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
| | - G J Stasiuk
- Imaging Chemistry & Biology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - T S Horozov
- Department of Chemistry & Biochemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - D M A Buzza
- Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
6
|
Xie Q, Harting J. Controllable Capillary Assembly of Magnetic Ellipsoidal Janus Particles into Tunable Rings, Chains and Hexagonal Lattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006390. [PMID: 33448100 PMCID: PMC11468573 DOI: 10.1002/adma.202006390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Colloidal assembly at fluid interfaces has a great potential for the bottom-up fabrication of novel structured materials. However, challenges remain in realizing controllable and tunable assembly of particles into diverse structures. Herein, the capillary assembly of magnetic ellipsoidal Janus particles at a fluid-fluid interface is reported. Depending on their tilt angle, that is, the angle the particle main axis forms with the fluid interface, these particles deform the interface and generate capillary dipoles or hexapoles. Driven by capillary interactions, multiple particles thus assemble into chain-, hexagonal-lattice-, and ring-like structures, which can be actively controlled by applying an external magnetic field. A field-strength phase diagram is predicted in which various structures are present as stable states. Owing to the diversity, controllability, and tunability of assembled structures, magnetic ellipsoidal Janus particles at fluid interfaces could therefore serve as versatile building blocks for novel materials.
Collapse
Affiliation(s)
- Qingguang Xie
- Department of Applied PhysicsEindhoven University of TechnologyP.O. Box 5135600MBEindhovenThe Netherlands
| | - Jens Harting
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Forschungszentrum JülichFürther Str. 24890429NürnbergGermany
- Department of Chemical and Biological Engineering and Department of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergFürther Str. 24890429NürnbergGermany
| |
Collapse
|
7
|
Lishchuk SV, Ettelaie R. Detachment work of prolate spheroidal particles from fluid droplets: role of viscous dissipation. SOFT MATTER 2020; 16:4049-4056. [PMID: 32285867 DOI: 10.1039/c9sm02385b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The force-displacement curve for removal of an elongated solid particle from the surface of liquid droplets or gas bubbles is calculated and compared to our previous reported results for spherical particles. The surface adsorption energy for prolate particles is known to be larger than that for spheres. We show that in fact the minimum possible work done upon removal of an elongated particle from surface can be less than that for a sphere. This result is obtained when the dissipation of interfacial energy, stored in the fluid film, attaching the particles to the surface during their displacement, is properly accounted for. This dissipation is unavoidable, even if the particles are removed infinitely slowly. Once the particle actually leaves the surface, the formed liquid bridge relaxes thus dissipating any stored interfacial energy as the surface returns to its original undistorted state. The difference between the work of removal of a particle from surface and its adsorption energy is seen to become increasingly larger with smaller particle to droplet size ratios. For example, for a size ratio of 1 : 100, the work of removal is 1.93 times greater than the adsorption energy. However, we also find that for any given size ratio, there is a value of particle aspect ratio for which the work of removal of particles (combined dissipated and adsorbed energy) attains its minimum value.
Collapse
Affiliation(s)
- Sergey V Lishchuk
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|