1
|
Paul P, Saha S, Biradha K. Differentiating aliphatic and aromatic alcohols using triazine-based supramolecular organogelators: end group-specific selective gelation with chain length of alcohols. SOFT MATTER 2024; 20:2568-2574. [PMID: 38411472 DOI: 10.1039/d4sm00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Supramolecular gels have an extensive range of potential applications, out of which stimuli-responsive materials are a topic of contemporary research. Gels being kinetically entrapped materials can be tuned to different forms using external chemical stimuli. In this context, three different triazine gelators, each containing a unique end group, were examined for gelation in various solvent systems. Nevertheless, the gelation was limited to only alcoholic solvents, suggesting that the hydrogen bonds between the gelating solvent and gelator play a crucial role in gelation. Further, it was found that these gelators could gelate only with aliphatic alcohols, which could be degelled easily using aromatic alcohols. The three gelators exhibited distinct gelation of aliphatic alcohols based on their end groups. The gelator with the polar-aromatic end group (C5H4N) was found to gelate with lighter alcohols, whereas that with the nonpolar aromatic end group (C6H5) was found to prefer higher alcohols. The MGC and Tgel values were also found to depend on the alkyl chain length/branching of the alcohols. The crystal structure of one of the gelators provides insights into the model structure of the gels. Cyclohexanol was the only solvent that could produce gels with all three of the as-synthesised gelators. The process of degelation by aromatic alcohols was monitored at different points of the disassembly process by rheological and morphological measurements to understand the extent of controlled degelation. These gels have great potential for use in controlled drug delivery and chemical sensing, among other areas.
Collapse
Affiliation(s)
- Priya Paul
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India.
| | - Subhajit Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India.
| | - Kumar Biradha
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
2
|
Mondal J, Sivaramakrishna A. Functionalized Triazines and Tetrazines: Synthesis and Applications. Top Curr Chem (Cham) 2022; 380:34. [PMID: 35737142 DOI: 10.1007/s41061-022-00385-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022]
Abstract
The molecules possessing triazine and tetrazine moieties belong to a special class of heterocyclic compounds. Both triazines and tetrazines are building blocks and have provided a new dimension to the design of biologically important organic molecules. Several of their derivatives with fine-tuned electronic properties have been identified as multifunctional, adaptable, switchable, remarkably antifungal, anticancer, antiviral, antitumor, cardiotonic, anti-HIV, analgesic, anti-protozoal, etc. The objective of this review is to comprehensively describe the recent developments in synthesis, coordination properties, and various applications of triazine and tetrazine molecules. The rich literature demonstrates various synthetic routes for a variety of triazines and tetrazines through microwave-assisted, solid-phase, metal-based, [4+2] cycloaddition, and multicomponent one-pot reactions. Synthetic approaches contain linear, angular, and fused triazine and tetrazine heterocycles through a combinatorial method. Notably, the triazines and tetrazines undergo a variety of organic transformations, including electrophilic addition, coupling, nucleophilic displacement, and intramolecular cyclization. The mechanistic aspects of these heterocycles are discussed in a detailed way. The bioorthogonal application of these polyazines with various strained alkenes and alkynes provides a new prospect for investigations in chemical biology. This review systematically encapsulates the recent developments and challenges in the synthesis and possible potential applications of various triazine and tetrazine systems.
Collapse
Affiliation(s)
- Joydip Mondal
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
3
|
Ramdass A, Sathish V, Thanasekaran P. AIE or AIE(P)E-active transition metal complexes for highly sensitive detection of nitroaromatic explosives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
4
|
Barakat A, El‐Faham A, Haukka M, Al‐Majid AM, Soliman SM. s
‐Triazine pincer ligands: Synthesis of their metal complexes, coordination behavior, and applications. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Ayman El‐Faham
- Department of Chemistry, College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä PO Box 35 Jyväskylä FI‐40014 Finland
| | | | - Saied M. Soliman
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| |
Collapse
|
5
|
Capel Berdiell I, Kulmaczewski R, Warriner SL, Cespedes O, Halcrow MA. Iron and Silver Complexes of 4‐(Imidazol‐1‐yl)‐2,6‐di(pyrazol‐1‐yl)‐pyridine (
L
), Including a [Fe
3
(µ‐F)
2
F
6
L
8
]
+
Assembly. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Oscar Cespedes
- School of Physics and Astronomy University of Leeds EC Stoner Building LS2 9JT Leeds UK
| | | |
Collapse
|
6
|
Kordeyro Magrino D, Korshunov V, Lyssenko K, Gontcharenko V, Belousov Y, Pettinari C, Taydakov I. Luminescent complexes of Eu3+,Tb3+ and Gd3+ nitrates with polytopic ligand 2,4,6-tris(1H-pyrazol-1-yl)-1,3,5-triazine. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Capel Berdiell I, Farmiloe SE, Kulmaczewski R, Halcrow MA. Molecular squares, coordination polymers and mononuclear complexes supported by 2,4-dipyrazolyl-6H-1,3,5-triazine and 4,6-dipyrazolylpyrimidine ligands. Dalton Trans 2019; 48:17310-17320. [PMID: 31720621 DOI: 10.1039/c9dt04003j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Fe[BF4]2 complex of 2,4-di(pyrazol-1-yl)-6H-1,3,5-triazine (L1) is a high-spin molecular square, [{Fe(L1)}4(μ-L1)4][BF4]8, whose crystals also contain the unusual HPzBF3 (HPz = pyrazole) adduct. Three other 2,4-di(pyrazol-1-yl)-6H-1,3,5-triazine derivatives with different pyrazole substituents (L2-L4) are unstable in the presence of first row transition ions, but form mononuclear, polymeric or molecular square complexes with silver(i). Most of these compounds involve bis-bidentate di(pyrazolyl)triazine coordination, which is unusual for that class of ligand, and the molecular squares encapsulate one or two BF4-, ClO4- or SbF6- ions through combinations of anionπ, AgX and/or C-HX (X = O or F) interactions. Treatment of Fe[NCS]2 or Fe[NCSe]2 with 4,6-di(pyrazol-1-yl)-2H-pyrimidine (L5) or its 2-methyl and 2-amino derivatives (L6 and L7) yields mononuclear [Fe(NCE)2L2] and/or the 1D coordination polymers catena-[Fe(NCE)2(μ-L)] (E = S or Se, L = L5-L7). Alcohol solvates of isomorphous [Fe(NCS)2L2] and [Fe(NCSe)2L2] compounds show different patterns of intermolecular hydrogen bonding, reflecting the acceptor properties of the anion ligands. These iron compounds are all high-spin, although annealing solvated crystals of [Fe(NCSe)2(L5)2] affords a new phase exhibiting an abrupt, low-temperature spin transition. Catena-[Fe(H2O)2(μ-L5)][ClO4]2 is a coordination polymer of alternating cis and trans iron centres.
Collapse
Affiliation(s)
- Izar Capel Berdiell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
8
|
Zhu JN, Wang WK, Zheng J, Lin HP, Deng YX, Zhao SY. Iodine-Catalyzed Regioselective Oxidative Cyclization of Aldehyde Hydrazones with Electron-Deficient Olefins for the Synthesis of Mefenpyr-Diethyl. J Org Chem 2019; 84:11032-11041. [PMID: 31333030 DOI: 10.1021/acs.joc.9b01499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A regioselective synthesis of polysubstituted dihydropyrazoles and pyrazoles through an iodine-catalyzed oxidative cyclization strategy of aldehyde hydrazones with electron-deficient olefins is described. The protocol adopts very mild reaction conditions and provides desirable yields. The reaction is supposed to proceed via a cascade C-H functionalization, C-N bond formation, and oxidation sequential processes. The overall simplicity and regioselectivity of the catalytic system make this approach a valuable and step-economical tool to construct a C-C bond for the synthesis of Mefenpyr-Diethyl.
Collapse
Affiliation(s)
- Jia-Nan Zhu
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Jian Zheng
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hao-Peng Lin
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Yun-Xia Deng
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| |
Collapse
|
9
|
Abedi M, Mahmoudi G, Hayati P, Machura B, Zubkov FI, Mohammadi K, Bahrami S, Derikvandi H, Mehrabadi Z, Kirillov AM. A 3D heterometallic Ni(ii)/K(i) MOF with a rare rna topology: synthesis, structural features, and photocatalytic dye degradation modeling. NEW J CHEM 2019. [DOI: 10.1039/c9nj04382a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new picolinate-driven Ni/K MOF was prepared by different methods, fully characterized, and explored in the photocatalytic degradation of bromocresol green.
Collapse
|
10
|
Weekes RJ, Hawes CS. Synthesis, coordination chemistry and photophysical properties of naphtho-fused pyrazole ligands. CrystEngComm 2019. [DOI: 10.1039/c9ce01074b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis of two π-extended pyrazole ligands is reported, and their zinc(ii) and copper(ii) complexes are studied spectroscopically and crystallographically, revealing the influence of the fused naphthyl substituent.
Collapse
Affiliation(s)
- Rohan J. Weekes
- School of Chemical and Physical Sciences
- Keele University
- Keele ST5 5BG
- UK
| | - Chris S. Hawes
- School of Chemical and Physical Sciences
- Keele University
- Keele ST5 5BG
- UK
| |
Collapse
|