1
|
Almawash S. Oral Bioavailability Enhancement of Anti-Cancer Drugs Through Lipid Polymer Hybrid Nanoparticles. Pharmaceutics 2025; 17:381. [PMID: 40143044 PMCID: PMC11946161 DOI: 10.3390/pharmaceutics17030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/13/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer is considered as the second leading cause of death worldwide. Chemotherapy, radiotherapy, immunotherapy, and targeted drug delivery are the main treatment options for treating cancers. Chemotherapy drugs are either available for oral or parenteral use. Oral chemotherapy, also known as chemotherapy at home, is more likely to improve patient compliance and convenience. Oral anti-cancer drugs have bioavailability issues associated with lower aqueous solubility, first-pass metabolism, poor intestinal permeability and drug absorption, and degradation of the drug throughout its journey in the gastrointestinal tract. A highly developed carrier system known as lipid polymer hybrid nanoparticles (LPHNs) has been introduced. These nanocarriers enhance drug stability, solubility, and absorption, and reduce first-pass metabolism. Consequently, this will have a positive impact on oral bioavailability enhancement. This article provides an in-depth analysis of LPHNs as a novel drug delivery system for anti-cancer agents. It discusses an overview of the limited bioavailability of anti-cancer drugs, their reasons and consequences, LPHNs based anti-cancer drug delivery, conventional and modern preparation methods as well as their drug loading and entrapment efficiencies. In addition, this article also gives an insight into the mechanistic approach to oral bioavailability enhancement, potential applications in anti-cancer drug delivery, limitations, and future prospects of LPHNs in anti-cancer drug delivery.
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
2
|
Chen K, Yang H, Cai R. Microfluidics for Nanomedicine Delivery. ACS Biomater Sci Eng 2025; 11:774-783. [PMID: 39772433 DOI: 10.1021/acsbiomaterials.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nanomedicine is revolutionizing precision medicine, providing targeted, personalized treatment options. Lipid-based nanomedicines offer distinct benefits including high potency, targeted delivery, extended retention in the body, reduced toxicity, and lower required doses. These characteristics make lipid-based nanoparticles ideal for drug delivery in areas such as gene therapy, cancer treatment, and mRNA vaccines. However, traditional bulk synthesis methods for LNPs often produce larger particle sizes, significant polydispersity, and low encapsulation efficiency, which can reduce the therapeutic effectiveness. These issues primarily result from uneven mixing and limited control over particle formation during the synthesis. Microfluidic technology has emerged as a solution, providing precise control over particle size, uniformity, and encapsulation efficiency. In this mini review, we introduce the state-of-the-art microfluidic systems for lipid-based nanoparticle synthesis and functionalization. We include the working principles of different types of microfluidic systems, the use of microfluidic systems for LNP synthesis, cargo encapsulation, and nanomedicine delivery. In the end, we briefly discuss the clinical use of LNPs enabled by microfluidic devices.
Collapse
Affiliation(s)
- Kangfu Chen
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60611, United States
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Cheng Y, Hay CD, Mahuttanatan SM, Hindley JW, Ces O, Elani Y. Microfluidic technologies for lipid vesicle generation. LAB ON A CHIP 2024; 24:4679-4716. [PMID: 39323383 PMCID: PMC11425070 DOI: 10.1039/d4lc00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Encapsulating biological and non-biological materials in lipid vesicles presents significant potential in both industrial and academic settings. When smaller than 100 nm, lipid vesicles and lipid nanoparticles are ideal vehicles for drug delivery, facilitating the delivery of payloads, improving pharmacokinetics, and reducing the off-target effects of therapeutics. When larger than 1 μm, vesicles are useful as model membranes for biophysical studies, as synthetic cell chassis, as bio-inspired supramolecular devices, and as the basis of protocells to explore the origin of life. As applications of lipid vesicles gain prominence in the fields of nanomedicine, biotechnology, and synthetic biology, there is a demand for advanced technologies for their controlled construction, with microfluidic methods at the forefront of these developments. Compared to conventional bulk methods, emerging microfluidic methods offer advantages such as precise size control, increased production throughput, high encapsulation efficiency, user-defined membrane properties (i.e., lipid composition, vesicular architecture, compartmentalisation, membrane asymmetry, etc.), and potential integration with lab-on-chip manipulation and analysis modules. We provide a review of microfluidic lipid vesicle generation technologies, focusing on recent advances and state-of-the-art techniques. Principal technologies are described, and key research milestones are highlighted. The advantages and limitations of each approach are evaluated, and challenges and opportunities for microfluidic engineering of lipid vesicles to underpin a new generation of therapeutics, vaccines, sensors, and bio-inspired technologies are presented.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Callum D Hay
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Suchaya M Mahuttanatan
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - James W Hindley
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Oscar Ces
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Almeida DRS, Gil JF, Guillot AJ, Li J, Pinto RJB, Santos HA, Gonçalves G. Advances in Microfluidic-Based Core@Shell Nanoparticles Fabrication for Cancer Applications. Adv Healthc Mater 2024; 13:e2400946. [PMID: 38736024 DOI: 10.1002/adhm.202400946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Current research in cancer therapy focuses on personalized therapies, through nanotechnology-based targeted drug delivery systems. Particularly, controlled drug release with nanoparticles (NPs) can be designed to safely transport various active agents, optimizing delivery to specific organs and tumors, minimizing side effects. The use of microfluidics (MFs) in this field has stood out against conventional methods by allowing precise control over parameters like size, structure, composition, and mechanical/biological properties of nanoscale carriers. This review compiles applications of microfluidics in the production of core-shell NPs (CSNPs) for cancer therapy, discussing the versatility inherent in various microchannel and/or micromixer setups and showcasing how these setups can be utilized individually or in combination, as well as how this technology allows the development of new advances in more efficient and controlled fabrication of core-shell nanoformulations. Recent biological studies have achieved an effective, safe, and controlled delivery of otherwise unreliable encapsulants such as small interfering RNA (siRNA), plasmid DNA (pDNA), and cisplatin as a result of precisely tuned fabrication of nanocarriers, showing that this technology is paving the way for innovative strategies in cancer therapy nanofabrication, characterized by continuous production and high reproducibility. Finally, this review analyzes the technical, biological, and technological limitations that currently prevent this technology from becoming the standard.
Collapse
Affiliation(s)
- Duarte R S Almeida
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| | - João Ferreira Gil
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, Burjassot, Valencia, 46100, Spain
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Jiachen Li
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Ricardo J B Pinto
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Gil Gonçalves
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| |
Collapse
|
5
|
Verma J, Singh NK, Bansal KK. Recent patents in polymer-lipid hybrid nanoparticles technology. Ther Deliv 2024; 15:489-493. [PMID: 38979583 PMCID: PMC11412135 DOI: 10.1080/20415990.2024.2363646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Affiliation(s)
- Jyoti Verma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
6
|
Mohammadi M, Ahmed Qadir S, Mahmood Faraj A, Hamid Shareef O, Mahmoodi H, Mahmoudi F, Moradi S. Navigating the future: Microfluidics charting new routes in drug delivery. Int J Pharm 2024:124142. [PMID: 38648941 DOI: 10.1016/j.ijpharm.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microfluidics has emerged as a transformative force in the field of drug delivery, offering innovative avenues to produce a diverse range of nano drug delivery systems. Thanks to its precise manipulation of small fluid volumes and its exceptional command over the physicochemical characteristics of nanoparticles, this technology is notably able to enhance the pharmacokinetics of drugs. It has initiated a revolutionary phase in the domain of drug delivery, presenting a multitude of compelling advantages when it comes to developing nanocarriers tailored for the delivery of poorly soluble medications. These advantages represent a substantial departure from conventional drug delivery methodologies, marking a paradigm shift in pharmaceutical research and development. Furthermore, microfluidic platformsmay be strategically devised to facilitate targeted drug delivery with the objective of enhancing the localized bioavailability of pharmaceutical substances. In this paper, we have comprehensively investigated a range of significant microfluidic techniques used in the production of nanoscale drug delivery systems. This comprehensive review can serve as a valuable reference and offer insightful guidance for the development and optimization of numerous microfluidics-fabricated nanocarriers.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Syamand Ahmed Qadir
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Aryan Mahmood Faraj
- Department of Medical Laboratory Sciences, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Halabja, Iraq
| | - Osama Hamid Shareef
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Hassan Mahmoodi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Shan H, Sun Q, Xie Y, Liu X, Chen X, Zhao S, Chen Z. Dialysis-functionalized microfluidic platform for in situ formation of purified liposomes. Colloids Surf B Biointerfaces 2024; 236:113829. [PMID: 38430829 DOI: 10.1016/j.colsurfb.2024.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Continuous-flow microfluidic devices have been extensively used for producing liposomes due to their high controllability and efficient synthesis processes. However, traditional methods for liposome purification, such as dialysis, gel chromatography, and ultrafiltration, are incompatible with microfluidic devices, which would dramatically restrict the efficiency of liposome synthesis. In this study, we developed a dialysis-functionalized microfluidic platform (DFMP) for in situ formation of purified drug-loaded liposomes. The device was successfully fabricated by using a high-resolution projection micro stereolithography (PμSL) 3D printer. The integrated DFMP consists of a microfluidic mixing unit, a microfluidic dialysis unit, and a dialysis membrane, enabling the liposome preparation and purification in one device. The purified ICG-loaded liposomes prepared by DFMP had a smaller size (264.01±5.34 nm to 173.93±10.71 nm) and a higher encapsulation efficiency (EE) (43.53±0.07% to 46.07±0.67%). In vivo photoacoustic (PA) imaging experiment demonstrated that ICG-loaded liposomes purified with microfluidic dialysis exhibited a stronger penetration and accumulation (2-3 folds) in tumor sites. This work provides a new strategy for one-step production of purified drug-loaded liposomes.
Collapse
Affiliation(s)
- Han Shan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Qi Sun
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yang Xie
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiangdong Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China.
| | - Zeyu Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
8
|
Jain S, Kumar M, Kumar P, Verma J, Rosenholm JM, Bansal KK, Vaidya A. Lipid-Polymer Hybrid Nanosystems: A Rational Fusion for Advanced Therapeutic Delivery. J Funct Biomater 2023; 14:437. [PMID: 37754852 PMCID: PMC10531762 DOI: 10.3390/jfb14090437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Lipid nanoparticles (LNPs) are spherical vesicles composed of ionizable lipids that are neutral at physiological pH. Despite their benefits, unmodified LNP drug delivery systems have substantial drawbacks, including a lack of targeted selectivity, a short blood circulation period, and in vivo instability. lipid-polymer hybrid nanoparticles (LPHNPs) are the next generation of nanoparticles, having the combined benefits of polymeric nanoparticles and liposomes. LPHNPs are being prepared from both natural and synthetic polymers with various techniques, including one- or two-step methods, emulsification solvent evaporation (ESE) method, and the nanoprecipitation method. Varieties of LPHNPs, including monolithic hybrid nanoparticles, core-shell nanoparticles, hollow core-shell nanoparticles, biomimetic lipid-polymer hybrid nanoparticles, and polymer-caged liposomes, have been investigated for various drug delivery applications. However, core-shell nanoparticles having a polymeric core surrounded by a highly biocompatible lipid shell are the most commonly explored LPHNPs for the treatment of various diseases. In this review, we will shed light on the composition, methods of preparation, classification, surface functionalization, release mechanism, advantages and disadvantages, patents, and clinical trials of LPHNPs, with an emphasis on core-shell-structured LPHNPs.
Collapse
Affiliation(s)
- Shweta Jain
- Sir Madan Lal Institute of Pharmacy, Etawah 206310, India;
| | - Mudit Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India; (M.K.); (P.K.)
| | - Pushpendra Kumar
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India; (M.K.); (P.K.)
| | - Jyoti Verma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (J.V.); (J.M.R.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (J.V.); (J.M.R.)
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (J.V.); (J.M.R.)
| | - Ankur Vaidya
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India; (M.K.); (P.K.)
| |
Collapse
|
9
|
Fabozzi A, Della Sala F, di Gennaro M, Barretta M, Longobardo G, Solimando N, Pagliuca M, Borzacchiello A. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. LAB ON A CHIP 2023; 23:1389-1409. [PMID: 36647782 DOI: 10.1039/d2lc00933a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoparticle systems are functional carriers that can be used in the cancer therapy field for the delivery of a variety of hydrophobic and/or hydrophilic drugs. Recently, the advent of microfluidic platforms represents an advanced approach to the development of new nanoparticle-based drug delivery systems. Particularly, microfluidics can simplify the design of new nanoparticle-based systems with tunable physicochemical properties such as size, size distribution and morphology, ensuring high batch-to-batch reproducibility and consequently, an enhanced therapeutic effect in vitro and in vivo. In this perspective, we present accurate state-of-the-art microfluidic platforms focusing on the fabrication of polymer-based, lipid-based, lipid/polymer-based, inorganic-based and metal-based nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Antonio Fabozzi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| | - Mario di Gennaro
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Marco Barretta
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| | - Gennaro Longobardo
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, P. le Tecchio 80, 80125 Napoli, Italy
| | - Nicola Solimando
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Maurizio Pagliuca
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| |
Collapse
|
10
|
Agha A, Waheed W, Stiharu I, Nerguizian V, Destgeer G, Abu-Nada E, Alazzam A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. NANOSCALE RESEARCH LETTERS 2023; 18:18. [PMID: 36800044 PMCID: PMC9936499 DOI: 10.1186/s11671-023-03792-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023]
Abstract
Recent years have witnessed an increased interest in the development of nanoparticles (NPs) owing to their potential use in a wide variety of biomedical applications, including drug delivery, imaging agents, gene therapy, and vaccines, where recently, lipid nanoparticle mRNA-based vaccines were developed to prevent SARS-CoV-2 causing COVID-19. NPs typically fall into two broad categories: organic and inorganic. Organic NPs mainly include lipid-based and polymer-based nanoparticles, such as liposomes, solid lipid nanoparticles, polymersomes, dendrimers, and polymer micelles. Gold and silver NPs, iron oxide NPs, quantum dots, and carbon and silica-based nanomaterials make up the bulk of the inorganic NPs. These NPs are prepared using a variety of top-down and bottom-up approaches. Microfluidics provide an attractive synthesis alternative and is advantageous compared to the conventional bulk methods. The microfluidic mixing-based production methods offer better control in achieving the desired size, morphology, shape, size distribution, and surface properties of the synthesized NPs. The technology also exhibits excellent process repeatability, fast handling, less sample usage, and yields greater encapsulation efficiencies. In this article, we provide a comprehensive review of the microfluidic-based passive and active mixing techniques for NP synthesis, and their latest developments. Additionally, a summary of microfluidic devices used for NP production is presented. Nonetheless, despite significant advancements in the experimental procedures, complete details of a nanoparticle-based system cannot be deduced from the experiments alone, and thus, multiscale computer simulations are utilized to perform systematic investigations. The work also details the most common multiscale simulation methods and their advancements in unveiling critical mechanisms involved in nanoparticle synthesis and the interaction of nanoparticles with other entities, especially in biomedical and therapeutic systems. Finally, an analysis is provided on the challenges in microfluidics related to nanoparticle synthesis and applications, and the future perspectives, such as large-scale NP synthesis, and hybrid formulations and devices.
Collapse
Affiliation(s)
- Abdulrahman Agha
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Waqas Waheed
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
- System on Chip Center, Khalifa University, Abu Dhabi, UAE
| | | | | | - Ghulam Destgeer
- Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Eiyad Abu-Nada
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Anas Alazzam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
- System on Chip Center, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
11
|
Dave R, Patel R, Patel M. Hybrid Lipid-Polymer Nanoplatform: A Systematic Review for Targeted Colorectal Cancer Therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Serrano DR, Kara A, Yuste I, Luciano FC, Ongoren B, Anaya BJ, Molina G, Diez L, Ramirez BI, Ramirez IO, Sánchez-Guirales SA, Fernández-García R, Bautista L, Ruiz HK, Lalatsa A. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics 2023; 15:313. [PMID: 36839636 PMCID: PMC9967161 DOI: 10.3390/pharmaceutics15020313] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
3D printing technologies enable medicine customization adapted to patients' needs. There are several 3D printing techniques available, but majority of dosage forms and medical devices are printed using nozzle-based extrusion, laser-writing systems, and powder binder jetting. 3D printing has been demonstrated for a broad range of applications in development and targeting solid, semi-solid, and locally applied or implanted medicines. 3D-printed solid dosage forms allow the combination of one or more drugs within the same solid dosage form to improve patient compliance, facilitate deglutition, tailor the release profile, or fabricate new medicines for which no dosage form is available. Sustained-release 3D-printed implants, stents, and medical devices have been used mainly for joint replacement therapies, medical prostheses, and cardiovascular applications. Locally applied medicines, such as wound dressing, microneedles, and medicated contact lenses, have also been manufactured using 3D printing techniques. The challenge is to select the 3D printing technique most suitable for each application and the type of pharmaceutical ink that should be developed that possesses the required physicochemical and biological performance. The integration of biopharmaceuticals and nanotechnology-based drugs along with 3D printing ("nanoprinting") brings printed personalized nanomedicines within the most innovative perspectives for the coming years. Continuous manufacturing through the use of 3D-printed microfluidic chips facilitates their translation into clinical practice.
Collapse
Affiliation(s)
- Dolores R. Serrano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Aytug Kara
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Iván Yuste
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francis C. Luciano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Baris Ongoren
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Brayan J. Anaya
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gracia Molina
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Diez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Bianca I. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irving O. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sergio A. Sánchez-Guirales
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Raquel Fernández-García
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Liliana Bautista
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Helga K. Ruiz
- Department of Physical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aikaterini Lalatsa
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
13
|
Protopapa G, Bono N, Visone R, D'Alessandro F, Rasponi M, Candiani G. A new microfluidic platform for the highly reproducible preparation of non-viral gene delivery complexes. LAB ON A CHIP 2022; 23:136-145. [PMID: 36477137 DOI: 10.1039/d2lc00744d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transfection describes the delivery of exogenous nucleic acids (NAs) to cells utilizing non-viral means. In the last few decades, scientists have been doing their utmost to design ever more effective transfection reagents. These are eventually mixed with NAs to give rise to gene delivery complexes, which must undergo characterization, testing, and further refinement through the sequential reiteration of these steps. Unfortunately, although microfluidics offers distinct advantages over the canonical approaches to preparing particles, the systems available do not address the most frequent and practical quest for the simultaneous generation of multiple polymer-to-NA ratios (N/Ps). Herein, we developed a user-friendly microfluidic cartridge to repeatably prepare non-viral gene delivery particles and screen across a range of seven N/Ps at once or significant volumes of polyplexes at a given N/P. The microchip is equipped with a chaotic serial dilution generator for the automatic linear dilution of the polymer to the downstream area, which encompasses the NA divider to dispense equal amounts of DNA to the mixing area, enabling the formation of particles at seven N/Ps eventually collected in individual built-in tanks. This is the first example of a stand-alone microfluidic cartridge for the fast and repeatable preparation of non-viral gene delivery complexes at different N/Ps and their storage.
Collapse
Affiliation(s)
- Giovanni Protopapa
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Fabio D'Alessandro
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
14
|
Elhassan E, Devnarain N, Mohammed M, Govender T, Omolo CA. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. J Control Release 2022; 351:598-622. [DOI: 10.1016/j.jconrel.2022.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
|
15
|
Zheng H, Tao H, Wan J, Lee KY, Zheng Z, Leung SSY. Preparation of Drug-Loaded Liposomes with Multi-Inlet Vortex Mixers. Pharmaceutics 2022; 14:pharmaceutics14061223. [PMID: 35745796 PMCID: PMC9227628 DOI: 10.3390/pharmaceutics14061223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
The multi-inlet vortex mixer (MIVM) has emerged as a novel bottom-up technology for solid nanoparticle preparation. However, its performance in liposome preparation remains unknown. Here, two key process parameters (aqueous/organic flow rate ratio (FRR) and total flow rate (TFR)) of MIVM were investigated for liposome preparation. For this study, two model drugs (lysozyme and erythromycin) were chosen for liposome encapsulation as the representative hydrophilic and hydrophobic drugs, respectively. In addition, two modified MIVMs, one with herringbone-patterned straight inlets and one with zigzag inlets, were designed to further improve the mixing efficiency, aiming to achieve better drug encapsulation. Data showed that FRR played an important role in liposome size control, and a size of <200 nm was achieved by FRR higher than 3:1. Moreover, increasing TFR (from 1 to 100 mL/min) could further decrease the size at a given FRR. However, similar regularities in controlling the encapsulation efficiency (EE%) were only noted in erythromycin-loaded liposomes. Modified MIVMs improved the EE% of lysozyme-loaded liposomes by 2~3 times at TFR = 40 mL/min and FRR = 3:1, which was consistent with computational fluid dynamics simulations. In summary, the good performance of MIVM in the control of particle size and EE% makes it a promising tool for liposome preparation, especially for hydrophobic drug loading, at flexible production scales.
Collapse
Affiliation(s)
- Huangliang Zheng
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong; (H.Z.); (K.Y.L.)
| | - Hai Tao
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China; (H.T.); (J.W.)
| | - Jinzhao Wan
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China; (H.T.); (J.W.)
| | - Kei Yan Lee
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong; (H.Z.); (K.Y.L.)
| | - Zhanying Zheng
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China; (H.T.); (J.W.)
- Correspondence: (Z.Z.); (S.S.Y.L.)
| | - Sharon Shui Yee Leung
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong; (H.Z.); (K.Y.L.)
- Correspondence: (Z.Z.); (S.S.Y.L.)
| |
Collapse
|
16
|
Carvalho BG, Ceccato BT, Michelon M, Han SW, de la Torre LG. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics 2022; 14:141. [PMID: 35057037 PMCID: PMC8781930 DOI: 10.3390/pharmaceutics14010141] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles for a wide range of drugs and genetic materials. Microfluidic technology also allows the design of sustainable processes with less financial demand, while it can be scaled up using parallelization to increase production. From this perspective, this article reviews the recent advances in the synthesis of lipid-based nanostructures through microfluidics (liposomes, lipoplexes, lipid nanoparticles, core-shell nanoparticles, and biomimetic nanovesicles). Besides that, this review describes the recent microfluidic approaches to produce lipid micro-sized structures as giant unilamellar vesicles. New strategies are also described for the controlled release of the lipid payloads using microgels and droplet-based microfluidics. To address the importance of microfluidics for lipid-nanoparticle screening, an overview of how microfluidic systems can be used to mimic the cellular environment is also presented. Future trends and perspectives in designing novel nano and micro scales are also discussed herein.
Collapse
Affiliation(s)
- Bruna G. Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| | - Bruno T. Ceccato
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| | - Mariano Michelon
- School of Chemical and Food Engineering, Federal University of Rio Grande (FURG), Rio Grande 96203-900, Brazil;
| | - Sang W. Han
- Center for Cell Therapy and Molecular, Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04044-010, Brazil;
| | - Lucimara G. de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil; (B.G.C.); (B.T.C.)
| |
Collapse
|
17
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Mater Today Bio 2022; 13:100208. [PMID: 35198957 PMCID: PMC8841842 DOI: 10.1016/j.mtbio.2022.100208] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Nanotechnology in medical applications, especially in oncology as drug delivery systems, has recently shown promising results. However, although these advances have been promising in the pre-clinical stages, the clinical translation of this technology is challenging. To create drug delivery systems with increased treatment efficacy for clinical translation, the physicochemical characteristics of nanoparticles such as size, shape, elasticity (flexibility/rigidity), surface chemistry, and surface charge can be specified to optimize efficiency for a given application. Consequently, interdisciplinary researchers have focused on producing biocompatible materials, production technologies, or new formulations for efficient loading, and high stability. The effects of design parameters can be studied in vitro, in vivo, or using computational models, with the goal of understanding how they affect nanoparticle biophysics and their interactions with cells. The present review summarizes the advances and technologies in the production and design of cancer nanomedicines to achieve clinical translation and commercialization. We also highlight existing challenges and opportunities in the field.
Collapse
Key Words
- CFL, Cell-free layer
- CGMD, Coarse-grained molecular dynamic
- Clinical translation
- DPD, Dissipative particle dynamic
- Drug delivery
- Drug loading
- ECM, Extracellular matrix
- EPR, Permeability and retention
- IFP, Interstitial fluid pressure
- MD, Molecular dynamic
- MDR, Multidrug resistance
- MEC, Minimum effective concentration
- MMPs, Matrix metalloproteinases
- MPS, Mononuclear phagocyte system
- MTA, Multi-tadpole assemblies
- MTC, Minimum toxic concentration
- Nanomedicine
- Nanoparticle design
- RBC, Red blood cell
- TAF, Tumor-associated fibroblast
- TAM, Tumor-associated macrophage
- TIMPs, Tissue inhibitor of metalloproteinases
- TME, Tumor microenvironment
- Tumor microenvironment
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| | | | | | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Lance L. Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
18
|
Ottonelli I, Duskey JT, Rinaldi A, Grazioli MV, Parmeggiani I, Vandelli MA, Wang LZ, Prud’homme RK, Tosi G, Ruozi B. Microfluidic Technology for the Production of Hybrid Nanomedicines. Pharmaceutics 2021; 13:1495. [PMID: 34575571 PMCID: PMC8465086 DOI: 10.3390/pharmaceutics13091495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Microfluidic technologies have recently been applied as innovative methods for the production of a variety of nanomedicines (NMeds), demonstrating their potential on a global scale. The capacity to precisely control variables, such as the flow rate ratio, temperature, total flow rate, etc., allows for greater tunability of the NMed systems that are more standardized and automated than the ones obtained by well-known benchtop protocols. However, it is a crucial aspect to be able to obtain NMeds with the same characteristics of the previously optimized ones. In this study, we focused on the transfer of a production protocol for hybrid NMeds (H-NMeds) consisting of PLGA, Cholesterol, and Pluronic® F68 from a benchtop nanoprecipitation method to a microfluidic device. For this aim, we modified parameters such as the flow rate ratio, the concentration of core materials in the organic phase, and the ratio between PLGA and Cholesterol in the feeding organic phase. Outputs analysed were the chemico-physical properties, such as size, PDI, and surface charge, the composition in terms of %Cholesterol and residual %Pluronic® F68, their stability to lyophilization, and the morphology via atomic force and electron microscopy. On the basis of the results, even if microfluidic technology is one of the unique procedures to obtain industrial production of NMeds, we demonstrated that the translation from a benchtop method to a microfluidic one is not a simple transfer of already established parameters, with several variables to be taken into account and to be optimized.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Arianna Rinaldi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Vittoria Grazioli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Irene Parmeggiani
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Leon Z. Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (L.Z.W.); (R.K.P.)
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (L.Z.W.); (R.K.P.)
| | - Giovanni Tosi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Barbara Ruozi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| |
Collapse
|
19
|
Rezvantalab S, Maleki R, Drude NI, Khedri M, Jans A, Keshavarz Moraveji M, Darguzyte M, Ghasemy E, Tayebi L, Kiessling F. Experimental and Computational Study on the Microfluidic Control of Micellar Nanocarrier Properties. ACS OMEGA 2021; 6:23117-23128. [PMID: 34549113 PMCID: PMC8444197 DOI: 10.1021/acsomega.1c02651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Microfluidic-based synthesis is a powerful technique to prepare well-defined homogenous nanoparticles (NPs). However, the mechanisms defining NP properties, especially size evolution in a microchannel, are not fully understood. Herein, microfluidic and bulk syntheses of riboflavin (RF)-targeted poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG-RF) micelles were evaluated experimentally and computationally. Using molecular dynamics (MD), a conventional "random" model for bulk self-assembly of PLGA-PEG-RF was simulated and a conceptual "interface" mechanism was proposed for the microfluidic self-assembly at an atomic scale. The simulation results were in agreement with the observed experimental outcomes. NPs produced by microfluidics were smaller than those prepared by the bulk method. The computational approach suggested that the size-determining factor in microfluidics is the boundary of solvents in the entrance region of the microchannel, explaining the size difference between the two experimental methods. Therefore, this computational approach can be a powerful tool to gain a deeper understanding and optimize NP synthesis.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department
of Chemical Engineering, Urmia University
of Technology, 57166-93188 Urmia, Iran
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| | - Reza Maleki
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535 Iran
| | - Natascha Ingrid Drude
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
- Department
of Experimental Neurology, Charité
−Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mohammad Khedri
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535 Iran
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Alexander Jans
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Mostafa Keshavarz Moraveji
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Milita Darguzyte
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| | - Ebrahim Ghasemy
- Centre
Énergie Matériaux Télécommunications, Institut national de la recherché, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Lobat Tayebi
- School
of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Fabian Kiessling
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| |
Collapse
|
20
|
Bochicchio S, Lamberti G, Barba AA. Polymer-Lipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies. Pharmaceutics 2021; 13:198. [PMID: 33540659 PMCID: PMC7913085 DOI: 10.3390/pharmaceutics13020198] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Some issues in pharmaceutical therapies such as instability, poor membrane permeability, and bioavailability of drugs can be solved by the design of suitable delivery systems based on the combination of two pillar classes of ingredients: polymers and lipids. At the same time, modern technologies are required to overcome production limitations (low productivity, high energy consumption, expensive setup, long process times) to pass at the industrial level. In this paper, a summary of applications of polymeric and lipid materials combined as nanostructures (hybrid nanocarriers) is reported. Then, recent techniques adopted in the production of hybrid nanoparticles are discussed, highlighting limitations still present that hold back the industrial implementation.
Collapse
Affiliation(s)
- Sabrina Bochicchio
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy
| | - Gaetano Lamberti
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy
- Dipartimento di Ingegneria Industriale, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Anna Angela Barba
- Eng4Life Srl, Spin-Off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
21
|
Fabozzi A, Della Sala F, di Gennaro M, Solimando N, Pagliuca M, Borzacchiello A. Polymer based nanoparticles for biomedical applications by microfluidic techniques: from design to biological evaluation. Polym Chem 2021. [DOI: 10.1039/d1py01077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of microfluidic technologies represents a new strategy to produce and test drug delivery systems.
Collapse
Affiliation(s)
- Antonio Fabozzi
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Mario di Gennaro
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Nicola Solimando
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Maurizio Pagliuca
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| |
Collapse
|
22
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
|
24
|
Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904673. [PMID: 31702878 DOI: 10.1002/smll.201904673] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/27/2019] [Indexed: 06/10/2023]
Abstract
In the past two decades, microfluidics-based particle production is widely applied for multiple biological usages. Compared to conventional bulk methods, microfluidic-assisted particle production shows significant advantages, such as narrower particle size distribution, higher reproducibility, improved encapsulation efficiency, and enhanced scaling-up potency. Herein, an overview of the recent progress of the microfluidics technology for nano-, microparticles or droplet fabrication, and their biological applications is provided. For both nano-, microparticles/droplets, the previously established mechanisms behind particle production via microfluidics and some typical examples during the past five years are discussed. The emerging interdisciplinary technologies based on microfluidics that have produced microparticles or droplets for cellular analysis and artificial cells fabrication are summarized. The potential drawbacks and future perspectives are also briefly discussed.
Collapse
Affiliation(s)
- Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andre Python
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, OX3 7LF, Oxford, UK
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
25
|
Jiang L, Lee HW, Loo SCJ. Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Adv 2020; 10:8497-8517. [PMID: 35497832 PMCID: PMC9050015 DOI: 10.1039/c9ra10921h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
One of the most important health concerns in society is the development of pathogen-causing nosocomial infections. Since the first discovery of antibiotics, bacterial infections have been highly treatable. However, with evolution and the nondiscretionary usage of antibiotics, pathogens have also found new ways to survive the onslaught of antibiotics by surviving intracellularly or through the formation of obstinate biofilms, and through these, the outcomes of regular antibiotic treatments may now be unsatisfactory. Lipid-coated hybrid nanoparticles (LCHNPs) are the next-generation core–shell structured nanodelivery system, where an inorganic or organic core, loaded with antimicrobials, is enveloped by lipid layers. This core–shell structure, with multifarious decorations, not only improves the loading capabilities of therapeutics but also has the potential to improve therapeutic delivery, especially for targeting biofilm-based and intracellular bacterial infections. Although there has been significant interest in the development of LCHNPs, they have yet to be widely exploited for bacterial infections. In this review, we will provide an overview on the latest development of LCHNPs and the various approaches in synthesizing this nano-delivery system. In addition, a discussion on future perspectives of LCHNPs, in combination with other novel anti-bacterial technologies, will be provided towards the end of this review. Lipid-coated hybrid nanoparticles are next-generation core–shell structured nanodelivery systems, which improve the loading capabilities of therapeutics and can improve therapeutic delivery, especially for targeting biofilm-based and intracellular bacterial infections.![]()
Collapse
Affiliation(s)
- Lai Jiang
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
| | - Hiang Wee Lee
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
| | - Say Chye Joachim Loo
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
- Singapore Centre for Environmental Life Sciences Engineering
- Nanyang Technological University
| |
Collapse
|
26
|
Zhang L, Chen Q, Ma Y, Sun J. Microfluidic Methods for Fabrication and Engineering of Nanoparticle Drug Delivery Systems. ACS APPLIED BIO MATERIALS 2019; 3:107-120. [DOI: 10.1021/acsabm.9b00853] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qinghua Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Yao Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100149, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
27
|
Bovone G, Guzzi EA, Tibbitt MW. Flow‐based reactor design for the continuous production of polymeric nanoparticles. AIChE J 2019. [DOI: 10.1002/aic.16840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process EngineeringETH Zürich Zürich 8092 Switzerland
| | - Elia A. Guzzi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process EngineeringETH Zürich Zürich 8092 Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process EngineeringETH Zürich Zürich 8092 Switzerland
| |
Collapse
|