1
|
Margulis M, Rohana H, Erster O, Mandelboim M, Biber A, Schwartz E, Peretz A, Danielli A. Highly sensitive extraction-free saliva-based molecular assay for rapid diagnosis of SARS-CoV-2. J Clin Microbiol 2024; 62:e0060024. [PMID: 38785448 PMCID: PMC11237525 DOI: 10.1128/jcm.00600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The COVID-19 pandemic highlighted the necessity of fast, sensitive, and efficient methods to test large populations for respiratory viruses. The "gold standard" molecular assays for detecting respiratory viruses, such as quantitative polymerase chain reaction (qPCR) and reverse transcription qPCR (RT-qPCR), rely on invasive swab samples and require time-consuming and labor-intensive extraction processes. Moreover, the turnaround time for RT-qPCR-based assays is too lengthy for rapid screening. Extraction-free saliva-based methods provide a non-invasive sampling process with a fast turnaround time and are suitable for high-throughput applications. However, when used with a standard RT-qPCR system, the absence of extraction significantly reduces the assays' sensitivity. Here, using a novel optical modulation biosensing (OMB) platform, we developed a rapid and highly sensitive extraction-free saliva-based molecular assay. We blindly tested 364 paired nasopharyngeal swabs and saliva samples from suspected SARS-CoV-2 cases in Israel. Compared with the gold standard swab-based RT-qPCR assay, the sensitivity of the extraction-free saliva-based OMB assay is 90.7%, much higher than the sensitivity of extraction-free saliva-based RT-qPCR assay (77.8%) with similar specificity (95.3% and 97.6%, respectively). Moreover, out of 12 samples identified by the OMB-based assay as positive, 8 samples were collected from hospitalized patients in a COVID-19 ward and were verified to be SARS-CoV-2-positive upon admission, indicating that the actual clinical sensitivity and specificity of the OMB assay are higher. Considering its user-friendly saliva-based protocol, short and cost-effective extraction-free process, and high clinical accuracy, the OMB-based molecular assay is very suitable for high-throughput testing of large populations for respiratory viruses. IMPORTANCE Three years after the SARS-CoV-2 outbreak, there are no molecular tests that combine low-cost and straightforward sample preparation, effective sample handling, minimal reagent and disposable requirements, high sensitivity, and high throughput required for mass screening. Existing rapid molecular techniques typically sacrifice certain requirements to meet others. Yet, localized outbreaks of novel viral diseases happen daily in different parts of the world. In this context, respiratory diseases are of specific importance, as they are frequently airborne and highly contagious, with the potential for a rapid global spread. The widely accepted opinion is that another pandemic is just a question of time. To ensure that the containment efforts for the upcoming "disease X" are successful, introducing rapid, high-throughput, and highly sensitive diagnostic methods for detecting and identifying pathogens is critical. A few months into the pandemic, saliva was suggested as a diagnostic matrix for SARS-CoV-2 detection. The collection of saliva does not require swabs and is minimally invasive. In particular, extraction-free saliva-based assays require fewer reagents and disposables, and therefore are faster and cheaper, offering an appealing alternative for low-income countries. Unfortunately, current extraction-free saliva-based detection methods, such as direct RT-qPCR or isothermal amplification, have either low sensitivity or low throughput. Therefore, we believe that the presented highly sensitive ht-OMBi platform and the extraction-free saliva-based molecular assay can become an essential tool in the infectious disease monitoring toolbox.
Collapse
Affiliation(s)
- Michael Margulis
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Hanan Rohana
- Clinical Microbiology Laboratory, The Tzafon Medical Center, Poriya, Tiberias, Israel
| | - Oran Erster
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Asaf Biber
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Center for Geographic Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Eli Schwartz
- The Center for Geographic Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Avi Peretz
- Clinical Microbiology Laboratory, The Tzafon Medical Center, Poriya, Tiberias, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
2
|
Abuawad A, Ashhab Y, Offenhäusser A, Krause HJ. DNA Sensor for the Detection of Brucella spp. Based on Magnetic Nanoparticle Markers. Int J Mol Sci 2023; 24:17272. [PMID: 38139102 PMCID: PMC10744106 DOI: 10.3390/ijms242417272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Due to the limitations of conventional Brucella detection methods, including safety concerns, long incubation times, and limited specificity, the development of a rapid, selective, and accurate technique for the early detection of Brucella in livestock animals is crucial to prevent the spread of the associated disease. In the present study, we introduce a magnetic nanoparticle marker-based biosensor using frequency mixing magnetic detection for point-of-care testing and quantification of Brucella DNA. Superparamagnetic nanoparticles were used as magnetically measured markers to selectively detect the target DNA hybridized with its complementary capture probes immobilized on a porous polyethylene filter. Experimental conditions like density and length of the probes, hybridization time and temperature, and magnetic binding specificity, sensitivity, and detection limit were investigated and optimized. Our sensor demonstrated a relatively fast detection time of approximately 10 min, with a detection limit of 55 copies (0.09 fM) when tested using DNA amplified from Brucella genetic material. In addition, the detection specificity was examined using gDNA from Brucella and other zoonotic bacteria that may coexist in the same niche, confirming the method's selectivity for Brucella DNA. Our proposed biosensor has the potential to be used for the early detection of Brucella bacteria in the field and can contribute to disease control measures.
Collapse
Affiliation(s)
- Abdalhalim Abuawad
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Yaqoub Ashhab
- Palestine–Korea Biotechnology Center, Palestine Polytechnic University, Hebron P720, Palestine
| | - Andreas Offenhäusser
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
- Faculty of Mathematics, Computer Science and Natural Sciences, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Hans-Joachim Krause
- Institute of Biological Information Processing: Bioelectronics (IBI-3), Forschungszentrum Jülich, 52428 Jülich, Germany; (A.A.)
| |
Collapse
|
3
|
Roth S, Margulis M, Danielli A. Recent Advances in Rapid and Highly Sensitive Detection of Proteins and Specific DNA Sequences Using a Magnetic Modulation Biosensing System. SENSORS (BASEL, SWITZERLAND) 2022; 22:4497. [PMID: 35746278 PMCID: PMC9230956 DOI: 10.3390/s22124497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In early disease stages, biomolecules of interest exist in very low concentrations, presenting a significant challenge for analytical devices and methods. Here, we provide a comprehensive overview of an innovative optical biosensing technology, termed magnetic modulation biosensing (MMB), its biomedical applications, and its ongoing development. In MMB, magnetic beads are attached to fluorescently labeled target molecules. A controlled magnetic force aggregates the magnetic beads and transports them in and out of an excitation laser beam, generating a periodic fluorescent signal that is detected and demodulated. MMB applications include rapid and highly sensitive detection of specific nucleic acid sequences, antibodies, proteins, and protein interactions. Compared with other established analytical methodologies, MMB provides improved sensitivity, shorter processing time, and simpler protocols.
Collapse
|
4
|
Burg S, Roth S, Cohen M, Avivi-Mintz S, Margulis M, Rohana H, Peretz A, Danielli A. High throughput optical modulation biosensing for highly sensitive and rapid detection of biomarkers. Talanta 2022; 248:123624. [PMID: 35660998 DOI: 10.1016/j.talanta.2022.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
Rapid, highly sensitive, and high-throughput detection of biomarkers at low concentrations is invaluable for early diagnosis of various diseases. In many highly sensitive immunoassays, magnetic beads are used to capture fluorescently labeled target molecules. The target molecules are then quantified by detecting the fluorescent signal from individual beads, which is time consuming and requires a complicated and expensive detection system. Here, we demonstrate a high-throughput optical modulation biosensing (ht-OMB) system, which uses a small permanent magnet to aggregate the beads into a small detection volume and eliminates background noise by steering a laser beam in and out of the cluster of beads. Shortening the aggregation, acquisition, and well-to-well scanning transition times enables reading a 96-well plate within 10 min. Using the ht-OMB system to detect human Interleukin-8, we demonstrated a limit of detection of 0.14 ng/L and a 4-log dynamic range. Testing 94 RNA extracts from 36 confirmed RT-qPCR SARS-CoV-2-positive patients (Ct≤40) and 58 confirmed RT-qPCR SARS-CoV-2-negative individuals resulted in 100% sensitivity and 100% specificity.
Collapse
Affiliation(s)
- Shmuel Burg
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Shira Roth
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Meir Cohen
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Shira Avivi-Mintz
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Michael Margulis
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Hanan Rohana
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Avi Peretz
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Clinical Microbiology Laboratory, The Baruch Padeh Medical Center, Poriya, Tiberias, 1528001, Israel
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel.
| |
Collapse
|
5
|
Dierks C, Altgilbers S, Weigend A, Preisinger R, Weigend S. Sexing assay for chickens and other birds for large-scale application based on a conserved sequence variant in CHD1 genes on W and Z chromosomes. Anim Genet 2022; 53:235-237. [PMID: 35130358 DOI: 10.1111/age.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Claudia Dierks
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Neustadt, Germany
| | - Stefanie Altgilbers
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Neustadt, Germany
| | - Annett Weigend
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Neustadt, Germany
| | | | - Steffen Weigend
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Neustadt, Germany
| |
Collapse
|
6
|
Roth S, Ideses D, Juven-Gershon T, Danielli A. Rapid Biosensing Method for Detecting Protein-DNA Interactions. ACS Sens 2022; 7:60-70. [PMID: 34979074 DOI: 10.1021/acssensors.1c01579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identifying and investigating protein-DNA interactions, which play significant roles in many biological processes, is essential for basic and clinical research. Current techniques for identification of protein-DNA interactions are laborious, time-consuming, and suffer from nonspecific binding and limited sensitivity. To overcome these challenges and assess protein-DNA interactions, we use a magnetic modulation biosensing (MMB) system. In MMB, one of the interacting elements (protein or DNA) is immobilized to magnetic beads, and the other is coupled to a fluorescent molecule. Thus, the link between the magnetic bead and the fluorescent molecule is established only when binding occurs, enabling detection of the protein-DNA interaction. Using magnetic forces, the beads are concentrated and manipulated in a periodic motion in and out of a laser beam, producing a detectable oscillating signal. Using MMB, we detected protein-DNA interactions between short GC-rich DNA sequences and both a purified specificity protein 1 (Sp1) and an overexpressed Buttonhead (BTD) protein in a cell lysate. The specificity of the interactions was assessed using mutated DNA sequences and competition experiments. The assays were experimentally compared with commonly used electrophoretic mobility shift assay, which takes approximately 4-72 h. In comparison, the MMB-based assay's turnaround time is ∼2 h, and it provides unambiguous results and quantitative measures of performance. The MMB system uses simple and cheap components, making it an attractive alternative method over current costly and time-consuming techniques for analyzing protein-DNA interactions. Therefore, we anticipate that the MMB-based technique will significantly advance the detection of protein-DNA interactions in biomedical research.
Collapse
Affiliation(s)
- Shira Roth
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan 5290002, Israel
| |
Collapse
|
7
|
Shi Y, Zhao JY, Zhou JR, Ntambo MS, Xu PY, Rott PC, Gao SJ. Molecular Detection and Quantification of Xanthomonas albilineans in Juice from Symptomless Sugarcane Stalks Using a Real-Time Quantitative PCR Assay. PLANT DISEASE 2021; 105:3451-3458. [PMID: 34142842 DOI: 10.1094/pdis-03-21-0468-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Leaf scald, a bacterial disease caused by Xanthomonas albilineans (Ashby) Dowson, is a major limiting factor for sugarcane production worldwide. Accurate identification and quantification of X. albilineans is a prerequisite for successful management of this disease. A sensitive and robust quantitative PCR (qPCR) assay was developed in this study for detection and quantification of X. albilineans using TaqMan probe and primers targeting a putative adenosine triphosphate-binding cassette (ABC) transporter gene (abc). The novel qPCR assay was highly specific to the 43 tested X. albilineans strains belonging to different pulsed-field gel electrophoresis groups. The detection thresholds were 100 copies/µl of plasmid DNA, 100 fg/µl of bacterial genomic DNA, and 100 CFU/ml of bacterial suspension prepared from pure culture. This qPCR assay was 100 times more sensitive than a conventional PCR assay. The pathogen was detected by qPCR in 75.1% (410/546) of symptomless stalk samples, whereas only 28.4% (155/546) of samples tested positive by conventional PCR. Based on qPCR data, population densities of X. albilineans in symptomless stalks of the same varieties differed between two sugarcane production areas in China, Beihai (Guangxi Province) and Zhanjiang (Guangdong Province), and no significant correlation between these populations was identified. Furthermore, no relationship was found between these populations of the pathogen in asymptomatic stalks and the resistance level of the sugarcane varieties to leaf scald. The newly developed qPCR assay proved to be highly sensitive and reliable for the detection and quantification of X. albilineans in sugarcane stalks.
Collapse
Affiliation(s)
- Yang Shi
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian-Ying Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing-Ru Zhou
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mbuya Sylvain Ntambo
- Unité de Protection des Plantes, Département de Phytotechnie, Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Peng-Yuan Xu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Philippe C Rott
- CIRAD, UMR PHIM, F-34398 Montpellier, France
- PHIM, Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34398 Montpellier, France
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Margulis M, Erster O, Roth S, Mandelboim M, Danielli A. A Magnetic Modulation Biosensing-Based Molecular Assay for Rapid and Highly Sensitive Clinical Diagnosis of Coronavirus Disease 2019 (COVID-19). J Mol Diagn 2021; 23:1680-1690. [PMID: 34600139 PMCID: PMC8481636 DOI: 10.1016/j.jmoldx.2021.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/31/2021] [Accepted: 08/27/2021] [Indexed: 10/25/2022] Open
Abstract
Rapid and sensitive detection of human pathogens, such as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is an urgent and challenging task for clinical laboratories. Currently, the gold standard for SARS-CoV-2-specific RNA is based on quantitative RT-PCR (RT-qPCR), which relies on target amplification by Taq polymerase and uses a fluorescent resonance energy transfer-based hydrolysis probe. Although this method is accurate and specific, it is also time consuming. Here, a new molecular assay is described that combines a highly sensitive magnetic modulation biosensing (MMB) system, rapid thermal cycling, and a modified double-quenched hydrolysis probe. In vitro transcribed SARS-CoV-2 RNA targets spiked in PCR-grade water, were used to show that the calculated limit of detection of the MMB-based molecular assay was 1.6 copies per reaction. Testing 309 RNA extracts from 170 confirmed RT-qPCR SARS-CoV-2-negative individuals (30 of whom were positive for other respiratory viruses) and 139 RT-qPCR SARS-CoV-2-positive patients (CT ≤ 42) resulted in 97.8% sensitivity, 100% specificity, and 0% cross-reactivity. The total turnaround time of the MMB-based assay is 30 minutes, which is three to four times faster than a standard RT-qPCR. By adjusting the primers and the probe set, the platform can be easily adapted to detect most of the pathogens that are currently being diagnosed by RT-qPCR.
Collapse
Affiliation(s)
- Michael Margulis
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Oran Erster
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Shira Roth
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Centre, Ramat Gan, Israel.
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
9
|
Margulis M, Cohen M, Burg S, Avivi-Mintz S, Danielli A. Optical modulation biosensing system for rapid detection of biological targets at low concentrations. BIOMEDICAL OPTICS EXPRESS 2021; 12:5338-5350. [PMID: 34692186 PMCID: PMC8515954 DOI: 10.1364/boe.430410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
In many sensitive assays, target molecules are tagged using fluorescently labeled probes and captured using magnetic beads. Here, we introduce an optical modulation biosensing (OMB) system, which aggregates the beads into a small detection area and separates the signal from the background noise by manipulating the laser beam in and out of the cluster of beads. Using the OMB system to detect human interleukin-8, we demonstrated a limit of detection of 0.02 ng/L and a 4-log dynamic range. Using Zika-positive and healthy individuals' serum samples, we show that the OMB-based Zika IgG serological assay has 96% sensitivity and 100% specificity.
Collapse
Affiliation(s)
- Michael Margulis
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
- Equal contribution
| | - Meir Cohen
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
- Equal contribution
| | - Shmuel Burg
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Shira Avivi-Mintz
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Max and Anna Webb Street, Ramat Gan, 5290002, Israel
| |
Collapse
|
10
|
Roth S, Danielli A. Rapid and Sensitive Inhibitor Screening Using Magnetically Modulated Biosensors. SENSORS 2021; 21:s21144814. [PMID: 34300555 PMCID: PMC8309820 DOI: 10.3390/s21144814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/25/2023]
Abstract
Inhibitor screening is an important tool for drug development, especially during the COVID-19 pandemic. The most used in vitro inhibitor screening tool is an enzyme-linked immunosorbent assay (ELISA). However, ELISA-based inhibitor screening is time consuming and has a limited dynamic range. Using fluorescently and magnetically modulated biosensors (MMB), we developed a rapid and sensitive inhibitor screening tool. This study demonstrates its performance by screening small molecules and neutralizing antibodies as potential inhibitors of the interaction between the spike protein 1 (S1) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the angiotensin-converting enzyme 2 (ACE2) receptor. The MMB-based assay is highly sensitive, has minimal non-specific binding, and is much faster than the commonly used ELISA (2 h vs. 7–24 h). We anticipate that our method will lead to a remarkable advance in screening for new drug candidates.
Collapse
|