1
|
Lv C, Wei J, Hu F, Bian L, Ouyang Q. Effect of Sulfur Vacancies of CoNi 2S 4 on Its Electrochemical Performance in Hybrid Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27386-27395. [PMID: 39686533 DOI: 10.1021/acs.langmuir.4c03634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Ternary cobalt nickel sulfides are considered promising electrode materials due to their unique physical properties. However, its capacitive performance is still limited by the insufficient material utilization efficiency. Here, we design and fabricate CoNi2S4 with nanorods and hairy-petal-like nanosheets on nickel foam (NF) as an excellent self-standing electrode for a hybrid supercapacitor (HSC). The CoNi2S4 electrode material was synthesized on the NF substrate by cobalt organic framework (Co-MOF) conversion and introducing sulfur ion and nickel ion exchange. The CoNi2S4 electrode material with sulfur vacancies was controlled by regulating the reduction time, and then electrochemical analysis and comparison were performed. The results demonstrate that the synergistic effect of the MOF-derived CoNi2S4 skeleton and sulfur vacancies can significantly improve the electrochemical activity of nickel cobalt sulfide. The CoNi2S4 electrode exhibits a superior high specific capacitance of 5.24 F/cm2 at a current density of 3 mA/cm2. Furthermore, the assembled CoNi2S4-60//AC HSC displays a high energy density of 59.41 Wh/kg and a power density of 999.98 W/kg. Even after 10,000 continuous charge-discharge cycles, its initial capacitance was retained at 89.24%. These results demonstrate the feasibility and practicality of CoNi2S4-60 as an electrode material, showcasing its potential for real-world applications.
Collapse
Affiliation(s)
- Chenglong Lv
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jinhe Wei
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fei Hu
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Limin Bian
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qiuyun Ouyang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
2
|
Fakharuddin A, Li H, Di Giacomo F, Zhang T, Gasparini N, Elezzabi AY, Mohanty A, Ramadoss A, Ling J, Soultati A, Tountas M, Schmidt‐Mende L, Argitis P, Jose R, Nazeeruddin MK, Mohd Yusoff ARB, Vasilopoulou M. Fiber‐Shaped Electronic Devices. ADVANCED ENERGY MATERIALS 2021; 11. [DOI: 10.1002/aenm.202101443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 09/02/2023]
Abstract
AbstractTextile electronics embedded in clothing represent an exciting new frontier for modern healthcare and communication systems. Fundamental to the development of these textile electronics is the development of the fibers forming the cloths into electronic devices. An electronic fiber must undergo diverse scrutiny for its selection for a multifunctional textile, viz., from the material selection to the device architecture, from the wearability to mechanical stresses, and from the environmental compatibility to the end‐use management. Herein, the performance requirements of fiber‐shaped electronics are reviewed considering the characteristics of single electronic fibers and their assemblies in smart clothing. Broadly, this article includes i) processing strategies of electronic fibers with required properties from precursor to material, ii) the state‐of‐art of current fiber‐shaped electronics emphasizing light‐emitting devices, solar cells, sensors, nanogenerators, supercapacitors storage, and chromatic devices, iii) mechanisms involved in the operation of the above devices, iv) limitations of the current materials and device manufacturing techniques to achieve the target performance, and v) the knowledge gap that must be minimized prior to their deployment. Lessons learned from this review with regard to the challenges and prospects for developing fiber‐shaped electronic components are presented as directions for future research on wearable electronics.
Collapse
Affiliation(s)
| | - Haizeng Li
- Institute of Frontier and Interdisciplinarity Science Shandong University Qingdao 266237 China
| | - Francesco Di Giacomo
- Centre for Hybrid and Organic Solar Energy (CHOSE) Department of Electronic Engineering University of Rome Tor Vergata Rome 00133 Italy
| | - Tianyi Zhang
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W120BZ UK
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W120BZ UK
| | - Abdulhakem Y. Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Ankita Mohanty
- School for Advanced Research in Petrochemicals Laboratory for Advanced Research in Polymeric Materials Central Institute of Petrochemicals Engineering and Technology Bhubaneswar Odisha 751024 India
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals Laboratory for Advanced Research in Polymeric Materials Central Institute of Petrochemicals Engineering and Technology Bhubaneswar Odisha 751024 India
| | - JinKiong Ling
- Nanostructured Renewable Energy Material Laboratory Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Darul Makmur Kuantan 26300 Malaysia
| | - Anastasia Soultati
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| | - Marinos Tountas
- Department of Electrical and Computer Engineering Hellenic Mediterranean University Estavromenos Heraklion Crete GR‐71410 Greece
| | | | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| | - Rajan Jose
- Nanostructured Renewable Energy Material Laboratory Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Darul Makmur Kuantan 26300 Malaysia
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 Sion CH‐1951 Switzerland
| | - Abd Rashid Bin Mohd Yusoff
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| |
Collapse
|
3
|
Yang YJ, Yao C, Chen S, Wang N, Yang P, Jiang C, Liu M, Cheng Y. A 3D flower-like CoNi2S4/carbon nanotube nanosheet arrays grown on Ni foam as a binder-free electrode for asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Enhanced faradic activity by construction of p-n junction within reduced graphene oxide@cobalt nickel sulfide@nickle cobalt layered double hydroxide composite electrode for charge storage in hybrid supercapacitor. J Colloid Interface Sci 2021; 590:114-124. [PMID: 33524711 DOI: 10.1016/j.jcis.2021.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
The intrinsic faradic reactivity is the uppermost factor determining the charge storage capability of battery material, the construction of p-n junction composing of different faradic components is a rational tactics to enhance the faradic activity. Herein, a reduced graphene oxide@cobalt nickle sulfide@nickle cobalt layered double hydroxide composite (rGO@CoNi2S4@NiCo LDH) with p-n junction structure is designed by deposition of n-type nickle cobalt layered double hydroxide (NiCo LDH) around p-type reduced graphene oxide@cobalt nickle sulfide (rGO@CoNi2S4), the charge redistribution across the p-n junction enables enhanced faradic activities of both components and further the overall charge storage capacity of the resultant rGO@CoNi2S4@NiCo LDH battery electrode. As expected, the rGO@CoNi2S4@NiCo LDH electrode can deliver high specific capacity (Cs, 1310 ± 26 C g-1 at 1 A g-1) and good cycleability (77% Cs maintaining ratio undergoes 5000 charge-discharge cycles). Furthermore, the hybrid supercapacitor (HSC) based on the rGO@CoNi2S4@NiCo LDH p-n junction battery electrode exports high energy density (Ecell, 57.4 Wh kg-1 at 323 W kg-1) and good durability, showing the prospect of faradic p-n junction composite in battery typed energy storage.
Collapse
|