1
|
Wohlleben W, Bossa N, Mitrano DM, Scott K. Everything falls apart: How solids degrade and release nanomaterials, composite fragments, and microplastics. NANOIMPACT 2024; 34:100510. [PMID: 38759729 DOI: 10.1016/j.impact.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
To ensure the safe use of materials, one must assess the identity and quantity of exposure. Solid materials, such as plastics, metals, coatings and cements, degrade to some extent during their life cycle, and releases can occur during manufacturing, use and end-of-life. Releases (e.g., what is released, how does release happen, and how much material is released) depend on the composition and internal (nano)structures of the material as well as the applied stresses during the lifecycle. We consider, in some depth, releases from mechanical, weathering and thermal stresses and specifically address the use cases of fused-filament 3D printing, dermal contact, food contact and textile washing. Solid materials can release embedded nanomaterials, composite fragments, or micro- and nanoplastics, as well as volatile organics, ions and dissolved organics. The identity of the release is often a heterogenous mixture and requires adapted strategies for sampling and analysis, with suitable quality control measures. Control materials enhance robustness by enabling comparative testing, but reference materials are not always available as yet. The quantity of releases is typically described by time-dependent rates that are modulated by the nature and intensity of the applied stress, the chemical identity of the polymer or other solid matrix, and the chemical identity and compatibility of embedded engineered nanomaterials (ENMs) or other additives. Standardization of methods and the documentation of metadata, including all the above descriptors of the tested material, applied stresses, sampling and analytics, are identified as important needs to advance the field and to generate robust, comparable assessments. In this regard, there are strong methodological synergies between the study of all solid materials, including the study of micro- and nanoplastics. From an outlook perspective, we review the hazard of the released entities, and show how this informs risk assessment. We also address the transfer of methods to related issues such as tyre wear, advanced materials and advanced manufacturing, biodegradable polymers, and non-solid matrices. As the consideration of released entities will become more routine in industry via lifecycle assessment in Safe-and-Sustainable-by-Design practices, release assessments will require careful design of the study with quality controls, the use of agreed-on test materials and standardized methods where these exist and the adoption of clearly defined data reporting practices that enable data reuse, meta-analyses, and comparative studies.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Analytical and Materials Science, 67056 Ludwigshafen, Germany.
| | - Nathan Bossa
- TEMAS Solutions GmbH, Lätterweg 5, 5212 Hausen, Switzerland; Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Denise M Mitrano
- Environmental Systems Science Department, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Keana Scott
- Materials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS-8372, Gaithersburg, MD 20899, United States
| |
Collapse
|
2
|
Valentini F, Roux JC, Lopez-Cuesta JM, Fambri L, Dorigato A, Pegoretti A. Fire behaviour of EPDM/NBR panels with paraffin for thermal energy storage applications. Part 1: fire behaviour. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Ruggiero E, Santizo KY, Persson M, Delpivo C, Wohlleben W. Food contact of paper and plastic products containing SiO 2, Cu-Phthalocyanine, Fe 2O 3, CaCO 3: Ranking factors that control the similarity of form and rate of release. NANOIMPACT 2022; 25:100372. [PMID: 35559878 DOI: 10.1016/j.impact.2021.100372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 06/15/2023]
Abstract
The paper industry is an important sector annually consuming kilotons of nanoforms and non-nanoforms of fillers and pigments. Fillers accelerate the rate of drying (less energy needed) and product cost (increasing the load of low-cost fillers). The plastic industry is another use sector, where coloristic pigments can be in nanoform, and many food containers are made of plastic. Use of paper to wrap both wet and dry food is consumer practice, but not always intended by producers. Here we compare the release behavior of different nano-enabled products (NEPs) by changing a) nanoform (NF) characteristics, b) NF load, c) the nano-enabled product (NEP) matrix, and d) food simulants. The ranking of these factors enables an assessment of food contact by concepts of analogy, specifically via the similarities of the rate and form of release in food during contact. Three types of matrices were used: Paper, plastic ((Polylactic Acid (PLA), Polyamide (PA6), and Polyurethane (PU)), and a paint formulation. Two nanoforms each of SiO2, Fe2O3, Cu-Phthalocyanine were incorporated, additionally to the conventional form of CaCO3 that is always contained in paper to reduce cellulose consumption. Tests were guided by the European Regulation EC 1935/2004 and EU 10/2011. No evidence of particle release was observed: the qualitative similarity (the form of release) was high regarding the food contact of all NEPs with embedded NFs. Quantitative similarity of releases depended primarily on the NEP matrix, as this controls the penetration of the simulant fluid into the NEP. The solubility of the NF and impurities in the simulant fluid was the second decisive factor, as dissolution of the NF inside the NEP is the main mechanism of release. This led to complete removal of CaCO3 in acidic medium, whereas Fe and Si signals remained in the paper, consistent with the low release rates in an ionic form. In our set of 16 NEPs, only one NEP showed a dependence on the REACH NF descriptors (substance, size, shape, surface treatment, crystallinity, impurities), specifically attributed to differences in soluble impurities, whereas for all others the substance of the nanoform was sufficient to predict a similarity of food contact release, without influences of size, shape, surface treatment and crystallinity.
Collapse
Affiliation(s)
- Emmanuel Ruggiero
- BASF SE, Dept. Material Physics, 67056 Ludwigshafen, Germany; Avient, Milano, Italy
| | - Katherine Y Santizo
- BASF SE, Dept. Material Physics, 67056 Ludwigshafen, Germany; Virginia Tech, Blacksburg, VA USA
| | - Michael Persson
- Nouryon Pulp and Performance Chemicals AB, S-445 80 Bohus, Sweden; Chalmers Industriteknik Sven Hultins Plats 1, S-412 58 Gothenburg, Sweden
| | - Camilla Delpivo
- LEITAT Technological Center, C/Pallars 179-185, 08005 Barcelona, Spain
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics, 67056 Ludwigshafen, Germany; BASF SE, Dept. Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany.
| |
Collapse
|
4
|
Malik S, Krishnaswamy K, Mustapha A. Hazard Analysis and Risk-Based Preventive Controls (HARPC): Current Food Safety and Quality Standards for Complementary Foods. Foods 2021; 10:foods10092199. [PMID: 34574310 PMCID: PMC8468952 DOI: 10.3390/foods10092199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
Food safety is imperative, especially for infants and young children because of their underdeveloped immune systems. This requires adequate nutritious food with appropriate amounts of macro- and micronutrients. Currently, a well-established system for infant food is enforced by the regulatory bodies, but no clear system exists for complementary food, which is consumed by children from the age of 6 month to 24 months. As the child grows beyond 6 months, the need for nutrients increases, and if the nutritional needs are not fulfilled, it can lead to health problems, such as stunted growth, weak immune system, and cardiovascular diseases. Hence, it is important to have regulatory bodies monitoring complementary food in a similar capacity as is required for infant formula. The objective of this review is to provide an overview of the existing regulatory bodies, such as the Codex Alimentarius, International Standard Organization (ISO), Food and Drug Administration (FDA), etc., and their regulations specifically for infant formula that can be adopted for complementary foods. This study focuses on the development of a hazard analysis and risk-based preventive controls (HARPC)-based food safety plan to ensure safe food processing and prevent any possible outbreaks.
Collapse
Affiliation(s)
- Sargun Malik
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (S.M.); (A.M.)
| | - Kiruba Krishnaswamy
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (S.M.); (A.M.)
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| | - Azlin Mustapha
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA; (S.M.); (A.M.)
| |
Collapse
|
5
|
Velásquez E, Espinoza S, Valenzuela X, Garrido L, Galotto MJ, Guarda A, López de Dicastillo C. Effect of Organic Modifier Types on the Physical-Mechanical Properties and Overall Migration of Post-Consumer Polypropylene/Clay Nanocomposites for Food Packaging. Polymers (Basel) 2021; 13:1502. [PMID: 34066956 PMCID: PMC8125780 DOI: 10.3390/polym13091502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
The deterioration of the physical-mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.
Collapse
Affiliation(s)
- Eliezer Velásquez
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (E.V.); (S.E.); (X.V.); (L.G.); (M.J.G.); (A.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
| | - Sebastián Espinoza
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (E.V.); (S.E.); (X.V.); (L.G.); (M.J.G.); (A.G.)
| | - Ximena Valenzuela
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (E.V.); (S.E.); (X.V.); (L.G.); (M.J.G.); (A.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
| | - Luan Garrido
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (E.V.); (S.E.); (X.V.); (L.G.); (M.J.G.); (A.G.)
| | - María José Galotto
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (E.V.); (S.E.); (X.V.); (L.G.); (M.J.G.); (A.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
- Food Science and Technology Department, Technological Faculty, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (E.V.); (S.E.); (X.V.); (L.G.); (M.J.G.); (A.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
- Food Science and Technology Department, Technological Faculty, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
| | - Carol López de Dicastillo
- Packaging Innovation Center (LABEN-Chile), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile; (E.V.); (S.E.); (X.V.); (L.G.); (M.J.G.); (A.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
- Food Science and Technology Department, Technological Faculty, University of Santiago of Chile (USACH), Obispo Umaña 050, Santiago 9170201, Chile
| |
Collapse
|