1
|
Synthesis of Hydrophilic Poly(butylene succinate-butylene dilinoleate) (PBS-DLS) Copolymers Containing Poly(Ethylene Glycol) (PEG) of Variable Molecular Weights. Polymers (Basel) 2021; 13:polym13183177. [PMID: 34578078 PMCID: PMC8468582 DOI: 10.3390/polym13183177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/03/2023] Open
Abstract
Polymeric materials have numerous applications from the industrial to medical fields because of their vast controllable properties. In this study, we aimed to synthesize series of poly(butylene succinate-dilinoleic succinate-ethylene glycol succinate) (PBS-DLS-PEG) copolymers, by two-step polycondensation using a heterogeneous catalyst and a two-step process. PEG of different molecular weights, namely, 1000 g/mol and 6000 g/mol, was used in order to study its effect on the surface and thermal properties. The amount of the PBS hard segment in all copolymers was fixed at 70 wt%, while different ratios between the soft segments (DLS and PEG) were applied. The chemical structure of PBS-DLS-PEG was evaluated using Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Gel permeation chromatography was used to determine the molecular weight and dispersity index. The results of structural analysis indicate the incorporation of PEG in the macrochain. The physical and thermal properties of the newly synthesized copolymers were also evaluated using water contact angle measurements, differential scanning calorimetry and dynamic thermomechanical analysis. It was found that increasing the amount of PEG of a higher molecular weight increased the surface wettability of the new materials while maintaining their thermal properties. Importantly, the two-step melt polycondensation allowed a direct fabrication of a polymeric filament with a well-controlled diameter directly from the reactor. The obtained results clearly show that the use of two-step polycondensation in the melt allows obtaining novel PBS-DLS-PEG copolymers and creates new opportunities for the controlled processing of these hydrophilic and thermally stable copolymers for 3D printing technology, which is increasingly used in medical techniques.
Collapse
|
2
|
Bhat S, Uthappa UT, Altalhi T, Jung HY, Kurkuri MD. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater Sci Eng 2021; 8:4039-4076. [PMID: 34499471 DOI: 10.1021/acsbiomaterials.1c00438] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely used in tissue engineering applications at an increasing rate in recent years. The increased clinical demand for safe scaffolds, as well as the diversity and availability of biomaterials, has sparked rapid interest in fabricating diverse scaffolds to make significant progress in tissue engineering. Hydroxyapatite (HAP) has drawn substantial attention in recent years owing to its excellent physical, chemical, and biological properties and facile adaptable surface functionalization with other innumerable essential materials. This focused review spotlights a brief introduction on HAP, scope, a historical outline, basic structural features/properties, various synthetic strategies, and their scientific applications concentrating on functionalized HAP in the diverse area of tissue engineering fields such as bone, skin, periodontal, bone tissue fixation, cartilage, blood vessel, liver, tendon/ligament, and corneal are emphasized. Besides clinical translation aspects, the future challenges and prospects of HAP based biomaterials involved in tissue engineering are also discussed. Furthermore, it is expected that researchers may find this review expedient in gaining an overall understanding of the latest advancement of HAP based biomaterials.
Collapse
Affiliation(s)
- Shrinath Bhat
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - U T Uthappa
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India.,Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| |
Collapse
|
3
|
Jäger A, Donato RK, Perchacz M, Donato KZ, Starý Z, Konefał R, Serkis-Rodzeń M, Raucci MG, Fuentefria AM, Jäger E. Human metabolite-derived alkylsuccinate/dilinoleate copolymers: from synthesis to application. J Mater Chem B 2020; 8:9980-9996. [PMID: 33073835 DOI: 10.1039/d0tb02068k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The advances in polymer chemistry have allowed the preparation of biomedical polymers using human metabolites as monomers that can hold unique properties beyond the required biodegradability and biocompatibility. Herein, we demonstrate the use of endogenous human metabolites (succinic and dilinoleic acids) as monomeric building blocks to develop a new series of renewable resource-based biodegradable and biocompatible copolyesters. The novel copolyesters were characterized in detail employing several standard techniques, namely 1H NMR, 13C NMR, and FTIR spectroscopy and SEC, followed by an in-depth thermomechanical and surface characterization of their resulting thin films (DSC, TGA, DMTA, tensile tests, AFM, and contact angle measurements). Also, their anti-fungal biofilm properties were assessed via an anti-fungal biofilm assay and the biological properties were evaluated in vitro using relevant human-derived cells (human mesenchymal stem cells and normal human dermal fibroblasts). These novel highly biocompatible polymers are simple and cheap to prepare, and their synthesis can be easily scaled-up. They presented good mechanical, thermal and anti-fungal biofilm properties while also promoting cell attachment and proliferation, outperforming well-known polymers used for biomedical applications (e.g. PVC, PLGA, and PCL). Moreover, they induced morphological changes in the cells, which were dependent on the structural characteristics of the polymers. In addition, the obtained physicochemical and biological properties can be design-tuned by the synthesis of homo- and -copolymers through the selection of the diol moiety (ES, PS, or BS) and by the addition of a co-monomer, DLA. Consequently, the copolyesters presented herein have high application potential as renewable and cost-effective biopolymers for various biomedical applications.
Collapse
Affiliation(s)
- Alessandro Jäger
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Ricardo K Donato
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Magdalena Perchacz
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic. and Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Katarzyna Z Donato
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Zdeněk Starý
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Rafał Konefał
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Magdalena Serkis-Rodzeń
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Maria G Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council, Mostrad'Oltremare Pad.20, Viale Kennedy 54, 80125 Naples, Italy
| | - Alexandre M Fuentefria
- Laboratory of Applied Mycology, Department of Analysis, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|