1
|
Ahmed R, Calandra R, Marvi H. Learning to Control a Three-Dimensional Ferrofluidic Robot. Soft Robot 2024; 11:218-229. [PMID: 37870771 DOI: 10.1089/soro.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In recent years, ferrofluids have found increased popularity as a material for medical applications, such as ocular surgery, gastrointestinal surgery, and cancer treatment, among others. Ferrofluidic robots are multifunctional and scalable, exhibit fluid properties, and can be controlled remotely; thus, they are particularly advantageous for such medical tasks. Previously, ferrofluidic robot control has been achieved via the manipulation of handheld permanent magnets or in current-controlled electromagnetic fields resulting in two-dimensional position and shape control and three-dimensional (3D) coupled position-shape or position-only control. Control of ferrofluidic liquid droplet robots poses a unique challenge where model-based control has been shown to be computationally limiting. Thus, in this study, a model-free control method is chosen, and it is shown that the task of learning optimal control parameters for ferrofluidic robot control can be performed using machine learning. Particularly, we explore the use of Bayesian optimization to find optimal controller parameters for 3D pose control of a ferrofluid droplet: its centroid position, stretch direction, and stretch radius. We demonstrate that the position, stretch direction, and stretch radius of a ferrofluid droplet can be independently controlled in 3D with high accuracy and precision, using a simple control approach. Finally, we use ferrofluidic robots to perform pick-and-place, a lab-on-a-chip pH test, and electrical switching, in 3D settings. The purpose of this research is to expand the potential of ferrofluidic robots by introducing full pose control in 3D and to showcase the potential of this technology in the areas of microassembly, lab-on-a-chip, and electronics. The approach presented in this research can be used as a stepping-off point to incorporate ferrofluidic robots toward future research in these areas.
Collapse
Affiliation(s)
- Reza Ahmed
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona, USA
| | - Roberto Calandra
- Learning, Adaptive Systems, and Robotics (LASR) Lab, TU Dresden, Dresden, Germany
- The Centre for Tactile Internet with Human-in-the-Loop (CeTI), Dresden, Germany
| | - Hamid Marvi
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Ma Z, Wang Q, Ai J, Su B. Ferromagnetic Liquid Droplet on a Superhydrophobic Surface for the Transduction of Mechanical Energy to Electricity Based on Electromagnetic Induction. ACS NANO 2021; 15:12151-12160. [PMID: 34142804 DOI: 10.1021/acsnano.1c03539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ferromagnetic liquids undergo reversible magnetization changes upon varying external magnetic field levels. The movement of ferromagnetic liquid droplets across a coil under an external magnetic field holds promise as an energy transducer from mechanical force to electricity; however, it suffers from an adhesive issue between the ferromagnetic liquid and the solid pedestal. We introduce a superhydrophobic support that uses antiwetting surfaces to remarkably reduce adhesion during the movement of ferromagnetic liquid droplets. Maxwell numerical simulation was utilized to analyze the working mechanism and improve further electrical outputs. By controlling the droplet size, the strength of the magnetic bottom and the tilting speed of the test condition, we generated a ferromagnetic liquid droplet-based superhydrophobic magnetoelectric energy transducer (FLD-SMET) that can convert vibrational energy to electricity. When a 100 μL ferromagnetic liquid droplet was used for FLD-SMET under a 13 mT magnetic field, an electrical voltage response of 280 μV and electrical current response of ∼7.5 μA were generated using a shaking machine with a tilting speed of 9.5°/s. We thus show that such a device can serve as a self-powered light buoy floating on a water surface. Our study presents an applied concept for the design of droplet-based energy harvesters to convert surrounding vibrational energy to electricity.
Collapse
Affiliation(s)
- Zheng Ma
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P.R. China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jingwei Ai
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P.R. China
| |
Collapse
|
3
|
Isotta E, Syafiq U, Ataollahi N, Chiappini A, Malerba C, Luong S, Trifiletti V, Fenwick O, Pugno NM, Scardi P. Thermoelectric properties of CZTS thin films: effect of Cu-Zn disorder. Phys Chem Chem Phys 2021; 23:13148-13158. [PMID: 34075978 DOI: 10.1039/d1cp01327k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu-Zn disorder is known to deeply affect kesterite (Cu2ZnSnS4, CZTS) due to the low temperature order-disorder phase transition, leading to a random occupation of the two cations in the shared crystallographic planes. This defect complex has been extensively studied in the thin film photovoltaic sector, with considerable efforts in developing methods to quantify disorder. In this study, a preliminary investigation of thermoelectric properties in temperature for thin film CZTS is presented. It is found that Cu-Zn disorder enhances both electrical conductivity and Seebeck coefficient. This can positively affect the thermoelectric performance, showing a mechanism of potential interest for a broad class of quaternary chalcogenides. The order-disorder transition is clearly visible in the electronic properties. This feature is repeatable, with samples from different preparations and groups showing consistent results, qualitatively suggesting electronic measurements as possible methods to quantify disorder. Furthermore, the reversibility of the transition allows the electronic properties to be tuned via specific thermal treatments, pointing to interesting applications in tunable electronics.
Collapse
Affiliation(s)
- E Isotta
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy.
| | - U Syafiq
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy. and Solar Energy Research Institute, National University of Malaysia (SERI-UKM), 43600 Bangi, Selangor, Malaysia
| | - N Ataollahi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy.
| | - A Chiappini
- IFN-CNR CSMFO Lab. and FBK Photonics Unit, Trento, Italy
| | - C Malerba
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - S Luong
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - V Trifiletti
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - O Fenwick
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - N M Pugno
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy. and School of Engineering and Materials Science, Queen Mary University of London, London, UK and Department of Civil, Environmental and Mechanical Engineering, Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, University of Trento, Trento, Italy
| | - P Scardi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy.
| |
Collapse
|
4
|
Ilami M, Bagheri H, Ahmed R, Skowronek EO, Marvi H. Materials, Actuators, and Sensors for Soft Bioinspired Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003139. [PMID: 33346386 DOI: 10.1002/adma.202003139] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/15/2020] [Indexed: 05/23/2023]
Abstract
Biological systems can perform complex tasks with high compliance levels. This makes them a great source of inspiration for soft robotics. Indeed, the union of these fields has brought about bioinspired soft robotics, with hundreds of publications on novel research each year. This review aims to survey fundamental advances in bioinspired soft actuators and sensors with a focus on the progress between 2017 and 2020, providing a primer for the materials used in their design.
Collapse
Affiliation(s)
- Mahdi Ilami
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Hosain Bagheri
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Reza Ahmed
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - E Olga Skowronek
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Hamid Marvi
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
5
|
Abstract
To create a miniature shapeshifting robot capable of controlled movement, subdivision, regeneration, passage through small channels, engulfment of particles, object manipulation, and flow manipulation, a droplet of magnetically responsive ferrofluid is used. The ferrofluidic robot can achieve the aforementioned functions when both its position and shape are controlled using a custom electromagnetic field generation system. It is demonstrated that the proposed robot can perform these functions with submillimeter and subdegree error. A robot having these capabilities can remotely perform medical and microassembly tasks requiring fine dexterity that are currently difficult or impossible.
Collapse
Affiliation(s)
- Reza Ahmed
- School for Engineering of Matter Transport and Energy (SEMTE), Arizona State University, Tempe, Arizona, USA
| | - Mahdi Ilami
- School for Engineering of Matter Transport and Energy (SEMTE), Arizona State University, Tempe, Arizona, USA
| | - Joseph Bant
- School for Engineering of Matter Transport and Energy (SEMTE), Arizona State University, Tempe, Arizona, USA
| | - Borhan Beigzadeh
- School for Engineering of Matter Transport and Energy (SEMTE), Arizona State University, Tempe, Arizona, USA
| | - Hamid Marvi
- School for Engineering of Matter Transport and Energy (SEMTE), Arizona State University, Tempe, Arizona, USA
| |
Collapse
|