1
|
Potential Applications of Thermoresponsive Poly( N-Isoproplacrylamide)-Grafted Nylon Membranes: Effect of Grafting Yield and Architecture on Gating Performance. Polymers (Basel) 2023; 15:polym15030497. [PMID: 36771798 PMCID: PMC9920928 DOI: 10.3390/polym15030497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
This study illustrated the potential applications of thermoresponsive poly(N-isopropylacrylamide) (PNIPAm) grafted nylon membranes with different grafting yields and grafting architecture. The thermoresponsive gating performance at temperatures below and above the lower critical solution temperature (LCST) of PNIPAm (32 °C) were demonstrated. The linear PNIPAm-grafted nylon membrane exhibited a sharp response over the temperature range 20-40 °C. The grafting yield of 25.5% and 21.9%, for linear and crosslinked PNIPAm respectively, exhibited highest thermoresponsive gating function for water flux and had a stable and repeatable "open-closed" switching function over 5 cycle operations. An excellent oil/water separation was obtained at T < 32 °C, at which the hydrophilic behavior was observed. The linear PNIPAm-grafted nylon membrane with 35% grafting yield had the highest separation efficiency of 99.7%, while PNIPAm structures were found to be independent of the separation efficiency. In addition, the membranes with thermoresponsive gas permeability were successfully achieved. The O2 and CO2 transmission rates through the PNIPAm-grafted nylon membranes decreased when the grafting yield increased, showing the better gas barrier property. The permeability ratio of CO2 to O2 transmission rates of both PNIPAm architectures at 25 °C and 35 °C were around 0.85 for low grafting yields, and approximately 1 for high grafting yields. Ultimately, this study demonstrated the possibility of using these thermoresponsive smart membranes in various applications.
Collapse
|
2
|
Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly( N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022; 8:454. [PMID: 35877539 PMCID: PMC9323937 DOI: 10.3390/gels8070454] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/21/2022] Open
Abstract
A prominent research topic in contemporary advanced functional materials science is the production of smart materials based on polymers that may independently adjust their physical and/or chemical characteristics when subjected to external stimuli. Smart hydrogels based on poly(N-isopropylacrylamide) (PNIPAM) demonstrate distinct thermoresponsive features close to a lower critical solution temperature (LCST) that enhance their capability in various biomedical applications such as drug delivery, tissue engineering, and wound dressings. Nevertheless, they have intrinsic shortcomings such as poor mechanical properties, limited loading capacity of actives, and poor biodegradability. Formulation of PNIPAM with diverse functional constituents to develop hydrogel composites is an efficient scheme to overcome these defects, which can significantly help for practicable application. This review reports on the latest developments in functional PNIPAM-based smart hydrogels for various biomedical applications. The first section describes the properties of PNIPAM-based hydrogels, followed by potential applications in diverse fields. Ultimately, this review summarizes the challenges and opportunities in this emerging area of research and development concerning this fascinating polymer-based system deep-rooted in chemistry and material science.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul R. Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015, USA;
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Road, Phagwara 144001, Punjab, India;
| | - Kingshuk Panda
- Department of Applied Microbiology, Vellore Institute of Technology, School of Bioscience and Technology, Vellore 632014, Tamilnadu, India;
| | - Kishore Dhotre
- I.C.M.R.—National Institute of Virology, Pune 411021, Maharashtra, India;
| | - Ravi Manne
- Chemtex Environmental Lab, Quality Control and Assurance Department, 3082 25th Street, Port Arthur, TX 77642, USA;
| | - A. Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600124, Tamil Nadu, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; or
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
3
|
Unusual Lower Critical Solution Temperature Phase Behavior of Poly(benzyl methacrylate) in a Pyrrolidinium-Based Ionic Liquid. Molecules 2021; 26:molecules26164850. [PMID: 34443438 PMCID: PMC8399651 DOI: 10.3390/molecules26164850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Polymer/ionic liquid systems are being increasingly explored, yet those exhibiting lower critical solution temperature (LCST) phase behavior remain poorly understood. Poly(benzyl methacrylate) in certain ionic liquids constitute unusual LCST systems, in that the second virial coefficient (A2) in dilute solutions has recently been shown to be positive, indicative of good solvent behavior, even above phase separation temperatures, where A2 < 0 is expected. In this work, we describe the LCST phase behavior of poly(benzyl methacrylate) in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide for three different molecular weights (32, 63, and 76 kg/mol) in concentrated solutions (5–40% by weight). Turbidimetry measurements reveal a strong concentration dependence to the phase boundaries, yet the molecular weight is shown to have no influence. The critical compositions of these systems are not accessed, and must therefore lie above 40 wt% polymer, far from the values (ca. 10%) anticipated by Flory-Huggins theory. The proximity of the experimental cloud point to the coexistence curve (binodal) and the thermo-reversibility of the phase transitions, are also confirmed at various heating and cooling rates.
Collapse
|
4
|
Zhang K, Xue K, Loh XJ. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021; 7:77. [PMID: 34202514 PMCID: PMC8293033 DOI: 10.3390/gels7030077] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
Thermogels are also known as thermo-sensitive or thermo-responsive hydrogels and can undergo a sol-gel transition as the temperature increases. This thermogelling behavior is the result of combined action from multiscale thermo-responsive mechanisms. From micro to macro, these mechanisms can be attributed to LCST behavior, micellization, and micelle aggregation of thermogelling polymers. Due to its facile phase conversion properties, thermogels are injectable yet can form an in situ gel in the human body. Thermogels act as a useful platform biomaterial that operates at physiological body temperatures. The purpose of this review is to summarize the recent progress in thermogel research, including investigations on the thermogel gelation mechanism and its applications in drug delivery, 3D cell culture, and tissue engineering. The review also discusses emerging directions in the study of thermogels.
Collapse
Affiliation(s)
- Kaiwen Zhang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology (SUSTech), 1088 Xueyuan Avenue, Shenzhen 518055, China;
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
5
|
Quoika P, Fernández-Quintero ML, Podewitz M, Hofer F, Liedl KR. Implementation of the Freely Jointed Chain Model to Assess Kinetics and Thermodynamics of Thermosensitive Coil-Globule Transition by Markov States. J Phys Chem B 2021; 125:4898-4909. [PMID: 33942614 PMCID: PMC8154620 DOI: 10.1021/acs.jpcb.1c01946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Indexed: 12/30/2022]
Abstract
We revived and implemented a method developed by Kuhn in 1934, originally only published in German, that is, the so-called "freely jointed chain" model. This approach turned out to be surprisingly useful for analyzing state-of-the-art computer simulations of the thermosensitive coil-globule transition of N-Isopropylacrylamide 20-mer. Our atomistic computer simulations are orders of magnitude longer than those of previous studies and lead to a reliable description of thermodynamics and kinetics at many different temperatures. The freely jointed chain model provides a coordinate system, which allows us to construct a Markov state model of the conformational transitions. Furthermore, this guarantees a reliable reconstruction of the kinetics in back-and-forth directions. In addition, we obtain a description of the high diversity and variability of both conformational states. Thus, we gain a detailed understanding of the coil-globule transition. Surprisingly, conformational entropy turns out to play only a minor role in the thermodynamic balance of the process. Moreover, we show that the radius of gyration is an unexpectedly unsuitable coordinate to comprehend the transition kinetics because it does not capture the high conformational diversity within the different states. Consequently, the approach presented here allows for an exhaustive description and resolution of the conformational ensembles of arbitrary linear polymer chains.
Collapse
Affiliation(s)
- Patrick
K. Quoika
- Institute of General, Inorganic
and Theoretical Chemistry, and Centre of Molecular Biosciences University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Monica L. Fernández-Quintero
- Institute of General, Inorganic
and Theoretical Chemistry, and Centre of Molecular Biosciences University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Maren Podewitz
- Institute of General, Inorganic
and Theoretical Chemistry, and Centre of Molecular Biosciences University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Florian Hofer
- Institute of General, Inorganic
and Theoretical Chemistry, and Centre of Molecular Biosciences University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic
and Theoretical Chemistry, and Centre of Molecular Biosciences University
of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Zhang Q, Kelland MA, Lewoczko EM, Bohannon CA, Zhao B. Non-amide based zwitterionic poly(sulfobetaine methacrylate)s as kinetic hydrate inhibitors. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Quoika PK, Podewitz M, Wang Y, Kamenik AS, Loeffler JR, Liedl KR. Thermosensitive Hydration of Four Acrylamide-Based Polymers in Coil and Globule Conformations. J Phys Chem B 2020; 124:9745-9756. [PMID: 33054215 PMCID: PMC7604866 DOI: 10.1021/acs.jpcb.0c07232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
To
characterize the thermosensitive coil–globule transition in
atomistic detail, the conformational dynamics of linear polymer chains
of acrylamide-based polymers have been investigated at multiple temperatures.
Therefore, molecular dynamic simulations of 30mers of polyacrylamide
(AAm), poly-N-methylacrylamide (NMAAm), poly-N-ethylacrylamide (NEAAm), and poly-N-isopropylacrylamide
(NIPAAm) have been performed at temperatures ranging from 250 to 360
K for 2 μs. While two of the polymers are known to exhibit thermosensitivity
(NEAAm, NIPAAm), no thermosensitivity is observed for AAm and NMAAm
in aqueous solution. Our computer simulations consistently reproduce
these properties. To understand the thermosensitivity of the respective
polymers, the conformational ensembles at different temperatures have
been separated according to the coil–globule transition. The
coil and globule conformational ensembles were exhaustively analyzed
in terms of hydrogen bonding with the solvent, the change of the solvent
accessible surface, and enthalpic contributions. Surprisingly, independent
of different thermosensitive properties of the four polymers, the
surface affinity to water of coil conformations is higher than for
globule conformations. Therefore, polymer–solvent interactions
stabilize coil conformations at all temperatures. Nevertheless, the
enthalpic contributions alone cannot explain the differences in thermosensitivity.
This clearly implies that entropy is the distinctive factor for thermosensitivity.
With increasing side chain length, the lifetime of the hydrogen bonds
between the polymer surface and water is extended. Thus, we surmise
that a longer side chain induces a larger entropic penalty due to
immobilization of water molecules.
Collapse
Affiliation(s)
- Patrick K Quoika
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| | - Yin Wang
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| | - Anna S Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| | - Johannes R Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Centre of Molecular Biosciences University of Innsbruck, Innsbruck, A-6020 Austria
| |
Collapse
|