1
|
Mididoddi CK, Kilpatrick RJ, Sharp C, del Hougne P, Horsley SAR, Phillips DB. Threading light through dynamic complex media. NATURE PHOTONICS 2025; 19:434-440. [PMID: 40191671 PMCID: PMC11968404 DOI: 10.1038/s41566-025-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/12/2025] [Indexed: 04/09/2025]
Abstract
The dynamic scattering of light impacts sensing and communication technologies throughout the electromagnetic spectrum. Here we introduce a new way to control the propagation of light through time-varying complex media. Our strategy is based on the observation that in many dynamic scattering systems, some parts of the medium will change configuration more slowly than others. We experimentally demonstrate a suite of new techniques to identify and guide light through the more temporally stable channels within dynamic scattering media-threading optical fields around multiple highly dynamic pockets hidden at unknown locations inside. We first show how the temporal fluctuations in scattered light can be suppressed by optimizing the wavefront of the incident field. Next, we demonstrate how to accelerate this procedure by two orders of magnitude using a physically realized form of adjoint gradient descent optimization. Finally, we show how the time-averaged transmission matrix reveals a basis of temporal fluctuation eigenchannels that can be used to increase the stability of beam shaping through time-varying complex media such as bending multimode fibres. Our work has potential future applications to a variety of technologies reliant on general wave phenomena subject to dynamic conditions, from optics to microwaves and acoustics.
Collapse
|
2
|
Li Z, Zhu J, Gong W, Si K. Speed-enhanced scattering compensation method with sub-Nyquist sampling. OPTICS LETTERS 2024; 49:1269-1272. [PMID: 38426990 DOI: 10.1364/ol.515325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
A rapid feedback-based scattering compensation method is particularly important for guiding light precisely within turbid tissues, especially the dynamic tissues. However, the huge number of measurements that come from the underutilization of the signal frequency channel greatly limits the modulation speed. This paper introduces a rapid compensation method with the sub-Nyquist sampling which improves the channel utilization and the speed of wavefront shaping. The number of measurements is reduced to ∼1500 with 32 × 32 freedom, and the PBR of the focus reaches ∼200. The system performances are demonstrated by focusing the light through brain slices of different thicknesses.
Collapse
|
3
|
Ding C, Shao R, He Q, Li LS, Yang J. Wavefront shaping improves the transparency of the scattering media: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11507. [PMID: 38089445 PMCID: PMC10711682 DOI: 10.1117/1.jbo.29.s1.s11507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Significance Wavefront shaping (WFS) can compensate for distortions by optimizing the wavefront of the input light or reversing the transmission matrix of the media. It is a promising field of research. A thorough understanding of principles and developments of WFS is important for optical research. Aim To provide insight into WFS for researchers who deal with scattering in biomedicine, imaging, and optical communication, our study summarizes the basic principles and methods of WFS and reviews recent progress. Approach The basic principles, methods of WFS, and the latest applications of WFS in focusing, imaging, and multimode fiber (MMF) endoscopy are described. The practical challenges and prospects of future development are also discussed. Results Data-driven learning-based methods are opening up new possibilities for WFS. High-resolution imaging through MMFs can support small-diameter endoscopy in the future. Conclusion The rapid development of WFS over the past decade has shown that the best solution is not to avoid scattering but to find ways to correct it or even use it. WFS with faster speed, more optical modes, and more modulation degrees of freedom will continue to drive exciting developments in various fields.
Collapse
Affiliation(s)
- Chunxu Ding
- Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, Shanghai, China
| | - Rongjun Shao
- Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, Shanghai, China
| | - Qiaozhi He
- Shanghai Jiao Tong University, Institute of Marine Equipment, Shanghai, China
| | - Lei S. Li
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Jiamiao Yang
- Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, Shanghai, China
- Shanghai Jiao Tong University, Institute of Marine Equipment, Shanghai, China
| |
Collapse
|
4
|
Li Z, Zheng Y, Diao X, Li R, Sun N, Xu Y, Li X, Duan S, Gong W, Si K. Robust and adjustable dynamic scattering compensation for high-precision deep tissue optogenetics. Commun Biol 2023; 6:128. [PMID: 36721006 PMCID: PMC9889738 DOI: 10.1038/s42003-023-04487-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
The development of high-precision optogenetics in deep tissue is limited due to the strong optical scattering induced by biological tissue. Although various wavefront shaping techniques have been developed to compensate the scattering, it is still a challenge to non-invasively characterize the dynamic scattered optical wavefront inside the living tissue. Here, we present a non-invasive scattering compensation system with fast multidither coherent optical adaptive technique (fCOAT), which allows the rapid wavefront correction and stable focusing in dynamic scattering medium. We achieve subcellular-resolution focusing through 500-μm-thickness brain slices, or even three pieces overlapped mouse skulls after just one iteration with a 589 nm CW laser. Further, focusing through dynamic scattering medium such as live rat ear is also successfully achieved. The formed focus can maintain longer than 60 s, which satisfies the requirements of stable optogenetics manipulation. Moreover, the focus size is adjustable from subcellular level to tens of microns to freely match the various manipulation targets. With the specially designed fCOAT system, we successfully achieve single-cellular optogenetic manipulation through the brain tissue, with a stimulation efficiency enhancement up to 300% compared with that of the speckle.
Collapse
Affiliation(s)
- Zhenghan Li
- State Key Laboratory of Modern Optical Instrumentation, Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yameng Zheng
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
| | - Xintong Diao
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
| | - Rongrong Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
| | - Ning Sun
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
| | - Yongxian Xu
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
| | - Xiaoming Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
| | - Shumin Duan
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
| | - Wei Gong
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
| | - Ke Si
- State Key Laboratory of Modern Optical Instrumentation, Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, Zhejiang, China.
| |
Collapse
|
5
|
He S, Wang X, Ma K, Li L, Zhang Y. Recursion-driven bispectral imaging for dynamic scattering scenes. OPTICS LETTERS 2023; 48:287-290. [PMID: 36638439 DOI: 10.1364/ol.479873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Imaging dynamic strongly scattering scenes remains a significant challenge because it is typically believed that moving objects and dynamic media provide huge barriers. Instead, we use the dynamics of objects and media and put forward a recursion-driven bispectral imaging (ReDBI) framework here for the reconstruction of a stationary or moving object hidden behind the dynamic media. ReDBI avoids the errors introduced by speckle modulation and phase-retrieval algorithms in the existing studies. We also quantitatively assess the reconstruction difficulty of character and shape objects with the benchmark of the minimum number of speckle images (MNSI) required to achieve a high-quality reconstruction, which can help to comprehend the media's transfer properties.
Collapse
|
6
|
Liu L, Liang W, Qu Y, He Q, Shao R, Ding C, Yang J. Anti-scattering light focusing with full-polarization digital optical phase conjugation based on digital micromirror devices. OPTICS EXPRESS 2022; 30:31614-31622. [PMID: 36242240 DOI: 10.1364/oe.467444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The high resolution of optical imaging and optogenetic stimulation in the deep tissue requires focusing light against strong scattering with high contrast. Digital optical phase conjugation (DOPC) has emerged recently as a promising solution for this requirement, because of its short latency. A digital micromirror device (DMD) in the implementation of DOPC enables a large number of modulation modes and a high speed of modulation both of which are important when dealing with a highly dynamic scattering medium. Here, we propose full-polarization DOPC (fpDOPC) in which two DMDs simultaneously modulate the two orthogonally polarized components of the optical field, respectively, to mitigate the effect of depolarization caused by strong scattering. We designed a simple system to overcome the difficulty of alignment encountered when modulating two polarized components independently. Our simulation and experiment showed that fpDOPC could generate a high-contrast focal spot, even though the polarization of light had been highly randomized by scattering. In comparison with the conventional method of modulating the polarization along a particular direction, fpDOPC can improve the peak to background ratio of the focal spot by a factor of two. This new technique has good potential in applications such as high-contrast light focusing in vivo.
Collapse
|
7
|
Yang J, He Q, Liu L, Qu Y, Shao R, Song B, Zhao Y. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device. LIGHT, SCIENCE & APPLICATIONS 2021; 10:149. [PMID: 34285183 PMCID: PMC8292544 DOI: 10.1038/s41377-021-00591-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 05/05/2023]
Abstract
Speed and enhancement are the two most important metrics for anti-scattering light focusing by wavefront shaping (WS), which requires a spatial light modulator with a large number of modulation modes and a fast speed of response. Among the commercial modulators, the digital-micromirror device (DMD) is the sole solution providing millions of modulation modes and a pattern rate higher than 20 kHz. Thus, it has the potential to accelerate the process of anti-scattering light focusing with a high enhancement. Nevertheless, modulating light in a binary mode by the DMD restricts both the speed and enhancement seriously. Here, we propose a multi-pixel encoded DMD-based WS method by combining multiple micromirrors into a single modulation unit to overcome the drawbacks of binary modulation. In addition, to efficiently optimize the wavefront, we adopted separable natural evolution strategies (SNES), which could carry out a global search against a noisy environment. Compared with the state-of-the-art DMD-based WS method, the proposed method increased the speed of optimization and enhancement of focus by a factor of 179 and 16, respectively. In our demonstration, we achieved 10 foci with homogeneous brightness at a high speed and formed W- and S-shape patterns against the scattering medium. The experimental results suggest that the proposed method will pave a new avenue for WS in the applications of biomedical imaging, photon therapy, optogenetics, dynamic holographic display, etc.
Collapse
Affiliation(s)
- Jiamiao Yang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, 200031, Shanghai, China
| | - Qiaozhi He
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Linxian Liu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
- School of Automation and Software Engineering, Shanxi University, 030006, Taiyuan, China.
| | - Yuan Qu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Rongjun Shao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bowen Song
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, 100191, Beijing, China
| | - Yanyu Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, 100191, Beijing, China.
| |
Collapse
|
8
|
Cheng Z, Yang J, Wang LV. Single-shot time-reversed optical focusing into and through scattering media. ACS PHOTONICS 2020; 7:2871-2877. [PMID: 34337103 PMCID: PMC8317964 DOI: 10.1021/acsphotonics.0c01154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Optical time reversal can focus light through or into scattering media, which raises a new possibility for conquering optical diffusion. Because optical time reversal must be completed within the correlation time of speckles, enhancing the speed of time-reversed optical focusing is important for practical applications. Although employing faster digital devices for time-reversal helps, more efficient methodologies are also desired. Here, we report a single-shot time-reversed optical focusing method to minimize the wavefront measurement time. In our approach, all information requisite for optical time reversal is extracted from a single-shot hologram, and hence no other preconditions or measurements are required. In particular, we demonstrate the first realization of single-shot time-reversed ultrasonically encoded (TRUE) optical focusing into scattering media. By using the minimum amount of measurement, this work breaks the fundamental speed limit of digitally based time reversal for focusing into and through scattering media, and constitutes an important step toward high-speed wavefront shaping applications.
Collapse
|