1
|
Johansen S, Park H, Wang LP, Crabtree KN. Reactant Discovery with an Ab Initio Nanoreactor: Exploration of Astrophysical N-Heterocycle Precursors and Formation Pathways. ACS EARTH & SPACE CHEMISTRY 2024; 8:1771-1783. [PMID: 39318708 PMCID: PMC11418024 DOI: 10.1021/acsearthspacechem.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
The incorporation of nitrogen atoms into cyclic compounds is essential for terrestrial life; nitrogen-containing (N-)heterocycles make up DNA and RNA nucleobases, several amino acids, B vitamins, porphyrins, and other components of biomolecules. The discovery of these molecules on meteorites with non-terrestrial isotopic abundances supports the hypothesis of exogenous delivery of prebiotic material to early Earth; however, there has been no detection of these species in interstellar environments, indicating that there is a need for greater knowledge of their astrochemical formation and destruction pathways. Here, we present results of simulations of gas-phase pyrrole and pyridine formation from an ab initio nanoreactor, a first-principles molecular dynamics simulation method that accelerates reaction discovery by applying non-equilibrium forces that are agnostic to individual reaction coordinates. Using the nanoreactor in a retrosynthetic mode, starting with the N-heterocycle of interest and a radical leaving group, then considering the discovered reaction pathways in reverse, a rich landscape of N-heterocycle-forming reactivity can be found. Several of these reaction pathways, when mapped to their corresponding minimum energy paths, correspond to novel barrierless formation pathways for pyridine and pyrrole, starting from both detected and hypothesized astrochemical precursors. This study demonstrates how first-principles reaction discovery can build mechanistic knowledge in astrochemical environments as well as in early Earth models such as Titan's atmosphere where N-heterocycles have been tentatively detected.
Collapse
Affiliation(s)
| | | | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Kyle N. Crabtree
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
2
|
Castiñeira Reis M, Martínez Núñez E, Fernández Ramos A. Comprehensive computational automated search of barrierless reactions leading to the formation of benzene and other C 6-membered rings. SCIENCE ADVANCES 2024; 10:eadq4077. [PMID: 39259783 PMCID: PMC11389753 DOI: 10.1126/sciadv.adq4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
We present the systematic exploration of various potential energy surfaces for systems with C6H6-x (x = 0, 1, 2, or 3) empirical formula using an automatic search approach. The primary objective of this study is to identify reaction pathways that lead to the creation of benzene, o-benzyne, and other rings. These pathways initiate with a barrierless recombination reaction and involve subsequent isomerization reactions with submerged transition states until the final product is reached. The reported reaction profiles are consistent with the existing conditions in the interstellar medium if the hot complex formed can cool down through radiative relaxation. Recent studies on the deactivation of polyaromatic hydrocarbons (PAHs) support the possibility of these reactions taking place. The C6-membered rings are considered precursors of PAHs, and our focus is on identifying pathways originating from the barrierless recombination of reactive molecules known to exist in the interstellar medium, with potential implications in other environments.
Collapse
Affiliation(s)
- Marta Castiñeira Reis
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Campus Vida, 15782, Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n, Santiago de Compostela, Spain
| | - Emilio Martínez Núñez
- Departamento de Química Física, Facultade de Química, Campus Vida, 15782, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, Santiago de Compostela, Spain
| | - Antonio Fernández Ramos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Campus Vida, 15782, Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n, Santiago de Compostela, Spain
- Departamento de Química Física, Facultade de Química, Campus Vida, 15782, Universidade de Santiago de Compostela, Avda. das Ciencias s/n, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Bensberg M, Reiher M. Uncertainty-Aware First-Principles Exploration of Chemical Reaction Networks. J Phys Chem A 2024; 128:4532-4547. [PMID: 38787736 PMCID: PMC11163430 DOI: 10.1021/acs.jpca.3c08386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Exploring large chemical reaction networks with automated exploration approaches and accurate quantum chemical methods can require prohibitively large computational resources. Here, we present an automated exploration approach that focuses on the kinetically relevant part of the reaction network by interweaving (i) large-scale exploration of chemical reactions, (ii) identification of kinetically relevant parts of the reaction network through microkinetic modeling, (iii) quantification and propagation of uncertainties, and (iv) reaction network refinement. Such an uncertainty-aware exploration of kinetically relevant parts of a reaction network with automated accuracy improvement has not been demonstrated before in a fully quantum mechanical approach. Uncertainties are identified by local or global sensitivity analysis. The network is refined in a rolling fashion during the exploration. Moreover, the uncertainties are considered during kinetically steering of a rolling reaction network exploration. We demonstrate our approach for Eschenmoser-Claisen rearrangement reactions. The sensitivity analysis identifies that only a small number of reactions and compounds are essential for describing the kinetics reliably, resulting in efficient explorations without sacrificing accuracy and without requiring prior knowledge about the chemistry unfolding.
Collapse
Affiliation(s)
- Moritz Bensberg
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied
Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Sabadell-Rendón A, Kaźmierczak K, Morandi S, Euzenat F, Curulla-Ferré D, López N. Automated MUltiscale simulation environment. DIGITAL DISCOVERY 2023; 2:1721-1732. [PMID: 38054103 PMCID: PMC10694852 DOI: 10.1039/d3dd00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
Multiscale techniques integrating detailed atomistic information on materials and reactions to predict the performance of heterogeneous catalytic full-scale reactors have been suggested but lack seamless implementation. The largest challenges in the multiscale modeling of reactors can be grouped into two main categories: catalytic complexity and the difference between time and length scales of chemical and transport phenomena. Here we introduce the Automated MUltiscale Simulation Environment AMUSE, a workflow that starts from Density Functional Theory (DFT) data, automates the analysis of the reaction networks through graph theory, prepares it for microkinetic modeling, and subsequently integrates the results into a standard open-source Computational Fluid Dynamics (CFD) code. We demonstrate the capabilities of AMUSE by applying it to the unimolecular iso-propanol dehydrogenation reaction and then, increasing the complexity, to the pre-commercial Pd/In2O3 catalyst employed for the CO2 hydrogenation to methanol. The results show that AMUSE allows the computational investigation of heterogeneous catalytic reactions in a comprehensive way, providing essential information for catalyst design from the atomistic to the reactor scale level.
Collapse
Affiliation(s)
- Albert Sabadell-Rendón
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, (BIST) Av. Paisos Catalans 16 Tarragona 43007 Spain
| | - Kamila Kaźmierczak
- TotalEnergies, TotalEnergies One Tech Belgium Zone industrielle C, 7181 Feluy Belgium
| | - Santiago Morandi
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, (BIST) Av. Paisos Catalans 16 Tarragona 43007 Spain
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili Campus Sescelades, N4 Block, C. Marcel·lí Domingo 1 Tarragona 43007 Spain
| | - Florian Euzenat
- TotalEnergies Research and Technology Gonfreville, Route Industrielle, Carrefour 4, Port 4864 76700 Rogerville France
| | - Daniel Curulla-Ferré
- TotalEnergies, TotalEnergies One Tech Belgium Zone industrielle C, 7181 Feluy Belgium
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, (BIST) Av. Paisos Catalans 16 Tarragona 43007 Spain
| |
Collapse
|
5
|
Petrus E, Garay-Ruiz D, Reiher M, Bo C. Multi-Time-Scale Simulation of Complex Reactive Mixtures: How Do Polyoxometalates Form? J Am Chem Soc 2023; 145:18920-18930. [PMID: 37496164 DOI: 10.1021/jacs.3c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Understanding the dynamics of reactive mixtures still challenges both experiments and theory. A relevant example can be found in the chemistry of molecular metal-oxide nanoclusters, also known as polyoxometalates. The high number of species potentially involved, the interconnectivity of the reaction network, and the precise control of the pH and concentrations needed in the synthesis of such species make the theoretical/computational treatment of such processes cumbersome. This work addresses this issue relying on a unique combination of recently developed computational methods that tackle the construction, kinetic simulation, and analysis of complex chemical reaction networks. By using the Bell-Evans-Polanyi approximation for estimating activation energies, and an accurate and robust linear scaling for correcting the computed pKa values, we report herein multi-time-scale kinetic simulations for the self-assembly processes of polyoxotungstates that comprise 22 orders of magnitude, from tens of femtoseconds to months of reaction time. This very large time span was required to reproduce very fast processes such as the acid/base equilibria (at 10-12 s), relatively slow reactions such as the formation of key clusters such as the metatungstate (at 103 s), and the very slow assembly of the decatungstate (at 106 s). Analysis of the kinetic data and of the reaction network topology shed light onto the details of the main reaction mechanisms, which explains the origin of kinetic and thermodynamic control followed by the reaction. Simulations at alkaline pH fully reproduce experimental evidence since clusters do not form under those conditions.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
| | - Diego Garay-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
| | - Markus Reiher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans, 16, Tarragona 43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel•li Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|
6
|
Ballotta B, Martínez-Núñez E, Rampino S, Barone V. New prebiotic molecules in the interstellar medium from the reaction between vinyl alcohol and CN radicals: unsupervised reaction mechanism discovery, accurate electronic structure calculations and kinetic simulations. Phys Chem Chem Phys 2023; 25:22840-22850. [PMID: 37584420 DOI: 10.1039/d3cp02571c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Vinyl alcohol (VyA) and cyanide (CN) radicals are relatively abundant in the interstellar medium (ISM). VyA is the enolic tautomer of acetaldehyde and has two low-lying conformers, characterized by the syn or anti placement of hydroxyl hydrogen with respect to the double bond. In this paper, we present a gas-phase model of the barrierless reactions of both VyA's conformers with CN employing accurate quantum chemical computations in the framework of a master equation approach based on the transition state theory. Our results indicate that both VyA conformers feature a similar reactivity with CN, starting with a barrierless addition to the double bond and followed by different isomerization, dissociation, and/or hydrogen elimination steps. The rate constants computed for temperatures up to 600 K show that several reaction channels are open even under the harsh conditions of the ISM, with the favoured one providing the first feasible formation route of a prebiotic molecule not yet detected in the ISM, namely cyanoacetaldehyde. This finding suggests looking for cyanoacetaldehyde in regions where both VyA and CN have already been detected, like, e.g., Sagittarius B2N or G+0.693-0.027.
Collapse
Affiliation(s)
- Bernardo Ballotta
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Emilio Martínez-Núñez
- Departamento de Química Física, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782, Santiago de Compostela, Spain
| | - Sergio Rampino
- Università degli Studi di Padova, Dipartimento di Scienze Chimiche, Via Marzolo 1, 35131 Padova, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| |
Collapse
|
7
|
Guerrero-Méndez L, Lema-Saavedra A, Jiménez E, Fernández-Ramos A, Martínez-Núñez E. Gas-phase formation of glycolonitrile in the interstellar medium. Phys Chem Chem Phys 2023; 25:20988-20996. [PMID: 37503548 DOI: 10.1039/d3cp02379f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Our automated reaction discovery program, AutoMeKin, has been utilized to investigate the formation of glycolonitrile (HOCH2CN) in the gas phase under the low temperatures of the interstellar medium (ISM). The feasibility of a proposed pathway depends on the absence of barriers above the energy of reactants and the availability of the suggested precursors in the ISM. Based on these criteria, several radical-radical reactions and a radical-molecule reaction have been identified as viable formation routes in the ISM. Among the radical-radical reactions, OH + CH2CN appears to be the most relevant, considering the energy of the radicals and its ability to produce glycolonitrile in a single step. However, our analysis reveals that this reaction produces hydrogen isocyanide (HNC) and formaldehyde (CH2O), with rate coefficients ranging from (7.3-11.5) × 10-10 cm3 molecule-1 s-1 across the temperature range of 10-150 K. Furthermore, the identification of this remarkably efficient pathway for HNC elimination from glycolonitrile significantly broadens the possibilities for any radical-radical mechanism proposed in our research to be considered as a feasible pathway for the formation of HNC in the ISM. This finding is particularly interesing given the persistently unexplained overabundance of hydrogen isocyanide in the ISM. Among the radical-molecule reactions investigated, the most promising one is OH + CH2CHNH, which forms glycolonitrile and atomic hydrogen with rate coefficients in the range (0.3-6.6) × 10-10 cm3 molecule-1 s-1 within the 10-150 K temperature range. Our calculations indicate that the formation of both hydrogen isocyanide and glycolonitrile is efficient under the harsh conditions of the ISM.
Collapse
Affiliation(s)
- Luis Guerrero-Méndez
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Avda. das Ciencias s/n 15782, Santiago de Compostela, Spain.
| | - Anxo Lema-Saavedra
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1b, 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica (ICCA), Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13071, Ciudad Real, Spain
| | - Antonio Fernández-Ramos
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Avda. das Ciencias s/n 15782, Santiago de Compostela, Spain.
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Emilio Martínez-Núñez
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Avda. das Ciencias s/n 15782, Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Staub R, Gantzer P, Harabuchi Y, Maeda S, Varnek A. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules 2023; 28:molecules28114477. [PMID: 37298952 DOI: 10.3390/molecules28114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ab initio kinetic studies are important to understand and design novel chemical reactions. While the Artificial Force Induced Reaction (AFIR) method provides a convenient and efficient framework for kinetic studies, accurate explorations of reaction path networks incur high computational costs. In this article, we are investigating the applicability of Neural Network Potentials (NNP) to accelerate such studies. For this purpose, we are reporting a novel theoretical study of ethylene hydrogenation with a transition metal complex inspired by Wilkinson's catalyst, using the AFIR method. The resulting reaction path network was analyzed by the Generative Topographic Mapping method. The network's geometries were then used to train a state-of-the-art NNP model, to replace expensive ab initio calculations with fast NNP predictions during the search. This procedure was applied to run the first NNP-powered reaction path network exploration using the AFIR method. We discovered that such explorations are particularly challenging for general purpose NNP models, and we identified the underlying limitations. In addition, we are proposing to overcome these challenges by complementing NNP models with fast semiempirical predictions. The proposed solution offers a generally applicable framework, laying the foundations to further accelerate ab initio kinetic studies with Machine Learning Force Fields, and ultimately explore larger systems that are currently inaccessible.
Collapse
Affiliation(s)
- Ruben Staub
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Philippe Gantzer
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Japan Science and Technology Agency (JST), ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Japan Science and Technology Agency (JST), ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexandre Varnek
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Laboratory of Chemoinformatics, UMR 7140, CNRS, University of Strasbourg, 67081 Strasbourg, France
| |
Collapse
|
9
|
Jaume-Santero F, Bornet A, Valery A, Naderi N, Vicente Alvarez D, Proios D, Yazdani A, Bournez C, Fessard T, Teodoro D. Transformer Performance for Chemical Reactions: Analysis of Different Predictive and Evaluation Scenarios. J Chem Inf Model 2023; 63:1914-1924. [PMID: 36952584 PMCID: PMC10091402 DOI: 10.1021/acs.jcim.2c01407] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The prediction of chemical reaction pathways has been accelerated by the development of novel machine learning architectures based on the deep learning paradigm. In this context, deep neural networks initially designed for language translation have been used to accurately predict a wide range of chemical reactions. Among models suited for the task of language translation, the recently introduced molecular transformer reached impressive performance in terms of forward-synthesis and retrosynthesis predictions. In this study, we first present an analysis of the performance of transformer models for product, reactant, and reagent prediction tasks under different scenarios of data availability and data augmentation. We find that the impact of data augmentation depends on the prediction task and on the metric used to evaluate the model performance. Second, we probe the contribution of different combinations of input formats, tokenization schemes, and embedding strategies to model performance. We find that less stable input settings generally lead to better performance. Lastly, we validate the superiority of round-trip accuracy over simpler evaluation metrics, such as top-k accuracy, using a committee of human experts and show a strong agreement for predictions that pass the round-trip test. This demonstrates the usefulness of more elaborate metrics in complex predictive scenarios and highlights the limitations of direct comparisons to a predefined database, which may include a limited number of chemical reaction pathways.
Collapse
Affiliation(s)
- Fernando Jaume-Santero
- Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
- Geneva School of Business Administration, HES-SO University of Applied Sciences and Arts of Western Switzerland, 1227 Geneva, Switzerland
| | - Alban Bornet
- Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
- Geneva School of Business Administration, HES-SO University of Applied Sciences and Arts of Western Switzerland, 1227 Geneva, Switzerland
| | | | - Nona Naderi
- Geneva School of Business Administration, HES-SO University of Applied Sciences and Arts of Western Switzerland, 1227 Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David Vicente Alvarez
- Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
- Geneva School of Business Administration, HES-SO University of Applied Sciences and Arts of Western Switzerland, 1227 Geneva, Switzerland
| | - Dimitrios Proios
- Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
| | - Anthony Yazdani
- Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
| | | | | | - Douglas Teodoro
- Department of Radiology and Medical Informatics, University of Geneva, 1205 Geneva, Switzerland
- Geneva School of Business Administration, HES-SO University of Applied Sciences and Arts of Western Switzerland, 1227 Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Petrus E, Segado-Centellas M, Bo C. Computational Prediction of Speciation Diagrams and Nucleation Mechanisms: Molecular Vanadium, Niobium, and Tantalum Oxide Nanoclusters in Solution. Inorg Chem 2022; 61:13708-13718. [PMID: 35998382 DOI: 10.1021/acs.inorgchem.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the aqueous speciation of molecular metal-oxo-clusters plays a key role in different fields such as catalysis, electrochemistry, nuclear waste recycling, and biochemistry. To describe the speciation accurately, it is essential to elucidate the underlying self-assembly processes. Herein, we apply a computational method to predict the speciation and formation mechanisms of polyoxovanadates, -niobates, and -tantalates. While polyoxovanadates have been widely studied, polyoxoniobates and -tantalates lack the same level of understanding. First, we propose a pentavanadate cluster ([V5O14]3-) as a key intermediate for the formation of the decavanadate. Our computed phase speciation diagram is in particularly good agreement with the experiments. Second, we report the formation constants of the heptaniobate, [Nb7O22]9-, decaniobate, [Nb10O28]6-, and tetracosaniobate [H9Nb24O72]15-. Additionally, we compute the speciation and phase diagram of niobium, which so far was restricted to Lindqvist derivates. Finally, we predict the formation constant of the decatantalate ([Ta10O26]6-) in water, even though it had only been synthesized in toluene. Furthermore, we also calculate the corresponding speciation and phase diagrams for polyoxotantalates. Overall, we show that our method can be successfully applied to different families of molecular metal oxides without any need for readjustments; therefore, it can be regarded as a trustworthy tool for exploring polyoxometalates' chemistry.
Collapse
Affiliation(s)
- Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| | - Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel•lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
11
|
Garay-Ruiz D, Bo C. Chemical reaction network knowledge graphs: the OntoRXN ontology. J Cheminform 2022; 14:29. [PMID: 35637523 PMCID: PMC9153116 DOI: 10.1186/s13321-022-00610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
The organization and management of large amounts of data has become a major point in almost all areas of human knowledge. In this context, semantic approaches propose a structure for the target data, defining ontologies that state the types of entities on a certain field and how these entities are interrelated. In this work, we introduce OntoRXN, a novel ontology describing the reaction networks constructed from computational chemistry calculations. Under our paradigm, these networks are handled as undirected graphs, without assuming any traversal direction. From there, we propose a core class structure including reaction steps, network stages, chemical species, and the lower-level entities for the individual computational calculations. These individual calculations are founded on the OntoCompChem ontology and on the ioChem-BD database, where information is parsed and stored in CML format. OntoRXN is introduced through several examples in which knowledge graphs based on the ontology are generated for different chemical systems available on ioChem-BD. Finally, the resulting knowledge graphs are explored through SPARQL queries, illustrating the power of the semantic approach to standardize the analysis of intricate datasets and to simplify the development of complex workflows.
Collapse
Affiliation(s)
- Diego Garay-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel . lí Domingo s/n, 43007 Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel . lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
12
|
Tsutsumi T, Ono Y, Taketsugu T. Reaction Space Projector (ReSPer) for Visualizing Dynamic Reaction Routes Based on Reduced-Dimension Space. Top Curr Chem (Cham) 2022; 380:19. [PMID: 35266073 DOI: 10.1007/s41061-022-00377-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
To analyze chemical reaction dynamics based on a reaction path network, we have developed the "Reaction Space Projector" (ReSPer) method with the aid of the dimensionality reduction method. This program has two functions: the construction of a reduced-dimensionality reaction space from a molecular structure dataset, and the projection of dynamic trajectories into the low-dimensional reaction space. In this paper, we apply ReSPer to isomerization and bifurcation reactions of the Au5 cluster and succeed in analyzing dynamic reaction routes involved in multiple elementary reaction processes, constructing complicated networks (called "closed islands") of nuclear permutation-inversion (NPI) isomerization reactions, and elucidating dynamic behaviors in bifurcation reactions with reference to bundles of trajectories. Interestingly, in the second application, we find a correspondence between the contribution ratios in the ability to visualize and the symmetry of the morphology of closed islands. In addition, the third application suggests the existence of boundaries that determine the selectivity in bifurcation reactions, which was discussed in the phase space. The ReSPer program is a versatile and robust tool to clarify dynamic reaction mechanisms based on the reduced-dimensionality reaction space without prior knowledge of target reactions.
Collapse
Affiliation(s)
- Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yuriko Ono
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|