1
|
Alcazar-Felix RJ, Shenkar R, Benavides CR, Bindal A, Srinath A, Li Y, Kinkade S, Terranova T, DeBose-Scarlett E, Lightle R, DeBiasse D, Almazroue H, Cruz DV, Romanos S, Jhaveri A, Koskimäki J, Hage S, Bennett C, Girard R, Marchuk DA, Awad IA. Except for Robust Outliers, Rapamycin Increases Lesion Burden in a Murine Model of Cerebral Cavernous Malformations. Transl Stroke Res 2025; 16:859-867. [PMID: 38980519 PMCID: PMC11711328 DOI: 10.1007/s12975-024-01270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Cerebral cavernous malformation (CCM) is a hemorrhagic cerebrovascular disease where lesions develop in the setting of endothelial mutations of CCM genes, with many cases also harboring somatic PIK3CA gain of function (GOF) mutations. Rapamycin, an mTORC1 inhibitor, inhibited progression of murine CCM lesions driven by Ccm gene loss and Pik3ca GOF, but it remains unknown if rapamycin is beneficial in the absence of induction of Pik3ca GOF. We investigated the effect of rapamycin at three clinically relevant doses on lesion development in the Ccm3-/-PDGFb-icreERPositive murine model of familial CCM disease, without induction of Pik3ca GOF. Lesion burden, attrition, and acute and chronic hemorrhaging were compared between placebo and rapamycin-treated mice. Plasma miRNome was compared to identify potential biomarkers of rapamycin response. Outlier, exceptionally large CCM lesions (> 2 SD above the mean lesion burden) were exclusively observed in the placebo group. Rapamycin, across all dosages, may have prevented the emergence of large outlier lesions. Yet rapamycin also appeared to exacerbate mean lesion burden of surviving mice when outliers were excluded, increased attrition, and did not alter hemorrhage. miR-30c-2-3p, decreased in rapamycin-treated mouse plasma, has gene targets in PI3K/AKT and mTOR signaling. Progression of outlier lesions in a familial CCM model may have been halted by rapamycin treatment, at the potential expense of increased mean lesion burden and increased attrition. If confirmed, this can have implications for potential rapamycin treatment of familial CCM disease, where lesion development may not be driven by PIK3CA GOF. Further studies are necessary to determine specific pathways that mediate potential beneficial and detrimental effects of rapamycin treatment, and whether somatic PIK3CA mutations drive particularly aggressive lesions.
Collapse
Affiliation(s)
- Roberto J Alcazar-Felix
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Christian R Benavides
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Akash Bindal
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Ying Li
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Serena Kinkade
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Tatiana Terranova
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Evon DeBose-Scarlett
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Dorothy DeBiasse
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Hanadi Almazroue
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Diana Vera Cruz
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Sharbel Romanos
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Aditya Jhaveri
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Stephanie Hage
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Carolyn Bennett
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Romuald Girard
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Issam A Awad
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Gajjar AA, Kayir I, Lee A, Jabarkheel R, Salem MM, Li L, Catapano J, Srinivasan VM, Burkhardt JK. Cerebral cavernous Malformation Surgery: National trends in Volume, Complications, and costs. J Clin Neurosci 2025; 135:111178. [PMID: 40153905 DOI: 10.1016/j.jocn.2025.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/08/2025] [Accepted: 03/08/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND AND OBJECTIVES Cerebral cavernous malformations (CCMs) are vascular anomalies that can lead to significant neurological complications, such as hemorrhage or lesion progression. This study analyzes trends in CCM resections across the United States, focusing on morbidity, mortality, and associated costs. METHODS A retrospective analysis was conducted on the National Inpatient Sample who underwent CCM resections from 2016 to 2020. Data were collected from a national database, including patient demographics, outcomes, and costs. Statistical analysis was performed to identify factors associated with in-hospital mortality, complications, length of stay (LOS), and cost. RESULTS The patient cohort identified 3,300 patients with a mean age of 42.8 years, with a slight female predominance (53.5 %) and a majority identifying as white (66.5 %). Complications occurred in 8.5 % of cases, with acute bleeding significantly increasing the risk of complications (OR = 2.15, p < 0.001), non-home discharge (OR = 2.52, p < 0.001), and extended LOS (OR = 3.21, p < 0.001). Non-elective admissions were associated with higher rates of complications (17.0 % vs. 3.4 %, p < 0.001) and extended LOS (OR = 2.84, p < 0.001). Independent factors for poor outcomes included higher Charlson Comorbidity Index (CCI) scores (OR = 1.417, p < 0.01) and patient demographics such as age and race, with Black race (OR = 6.84, p = 0.0199) and lower household income (OR = 2.17, p < 0.01) being significant predictors of in-hospital mortality. CONCLUSION This study highlights the significant impact of acute bleeding and non-elective admissions on complications and outcomes following CCM resection. Further research is warranted to analyze socio-economic factors in improving CCM resection outcomes and explore possible pharmacological treatment approaches in high-risk surgical patients.
Collapse
Affiliation(s)
- Avi A Gajjar
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ilayda Kayir
- Bahcesehir University, School of Medicine, Istanbul, Turkey
| | - Alyssa Lee
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Rashad Jabarkheel
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamed M Salem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lun Li
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua Catapano
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Dulamea AO, Lupescu IC. Cerebral cavernous malformations - An overview on genetics, clinical aspects and therapeutic strategies. J Neurol Sci 2024; 461:123044. [PMID: 38749279 DOI: 10.1016/j.jns.2024.123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Cerebral cavernous malformations (CCMs) are abnormally packed blood vessels lined with endothelial cells, that do not exhibit intervening tight junctions, lack muscular and elastic layers and are usually surrounded by hemosiderin and gliosis. CCMs may be sporadic or familial autosomal dominant (FCCMs) caused by loss of function mutations in CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10) genes. In the FCCMs, patients have multiple CCMs, different family members are affected, and developmental venous anomalies are absent. CCMs may be asymptomatic or may manifest with focal neurological deficits with or without associated hemorrhage andseizures. Recent studies identify a digenic "triple-hit" mechanism involving the aquisition of three distinct genetic mutations that culminate in phosphatidylinositol-3-kinase (PIK3CA) gain of function, as the basis for rapidly growing and clinically symptomatic CCMs. The pathophysiology of CCMs involves signaling aberrations in the neurovascular unit, including proliferative dysangiogenesis, blood-brain barrier hyperpermeability, inflammation and immune mediated processes, anticoagulant vascular domain, and gut microbiome-driven mechanisms. Clinical trials are investigating potential therapies, magnetic resonance imaging and plasma biomarkers for hemorrhage and CCMs-related epilepsy, as well as different techniques of neuronavigation and neurosonology to guide surgery in order to minimize post-operatory morbidity and mortality. This review addresses the recent data about the natural history, genetics, neuroimaging and therapeutic approaches for CCMs.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; Fundeni Clinical Institute, Department of Neurology, 258 Fundeni Street, 022328 Bucharest, Romania.
| | - Ioan Cristian Lupescu
- Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; Fundeni Clinical Institute, Department of Neurology, 258 Fundeni Street, 022328 Bucharest, Romania
| |
Collapse
|
4
|
Smith ER. Cavernous Malformations of the Central Nervous System. N Engl J Med 2024; 390:1022-1028. [PMID: 38477989 DOI: 10.1056/nejmra2305116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Affiliation(s)
- Edward R Smith
- From the Department of Neurosurgery, Children's Hospital Boston, and Harvard Medical School - both in Boston
| |
Collapse
|
5
|
Barros RDS, Queiroz LAD, de Assis JB, Pantoja KC, Bustia SX, de Sousa ESA, Rodrigues SF, Akamine EH, Sá-Nunes A, Martins JO. Effects of low-dose rapamycin on lymphoid organs of mice prone and resistant to accelerated senescence. Front Immunol 2024; 15:1310505. [PMID: 38515742 PMCID: PMC10954823 DOI: 10.3389/fimmu.2024.1310505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Aging is a complex, natural, and irreversible phenomenon that subjects the body to numerous changes in the physiological process, characterized by a gradual decline in the organism's homeostatic mechanisms, closely related to immunosenescence. Here, we evaluated the regulation of immunosenescence in lymphoid organs of senescence-accelerated prone 8 (SAM-P8) and senescence-accelerated resistant 1 (SAM-R1) mice treated with a low dose of rapamycin (RAPA). Mice were treated with a dose of 7.1 µg/kg RAPA for 2 months and had body mass and hematological parameters analyzed prior and during treatment. Cellular and humoral parameters of serum, bone marrow, thymus, and spleen samples were evaluated by ELISA, histology, and flow cytometry. Changes in body mass, hematological parameters, cell number, and in the secretion of IL-1β, IL-6, TNF-α, IL-7, and IL-15 cytokines were different between the 2 models used. In histological analyses, we observed that SAM-P8 mice showed faster thymic involution than SAM-R1 mice. Regarding the T lymphocyte subpopulations in the spleen, CD4+ and CD8+ T cell numbers were higher and lower, respectively, in SAM-P8 mice treated with RAPA, with the opposite observed in SAM-R1. Additionally, we found that the low dose of RAPA used did not trigger changes that could compromise the immune response of these mice and the administered dose may have contributed to changes in important lymphocyte populations in the adaptive immune response and the secretion of cytokines that directly collaborate with the maturation and proliferation of these cells.
Collapse
Affiliation(s)
- Rafael dos Santos Barros
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Luiz Adriano Damasceno Queiroz
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Josiane Betim de Assis
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kamilla Costa Pantoja
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Sofia Xavier Bustia
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Emanuella Sarmento Alho de Sousa
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Stephen Fernandes Rodrigues
- Laboratory of Vascular Nanopharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliana Hiromi Akamine
- Laboratory of Vascular Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Sharma S, Choubey R, Gupta M, Singh S. Heterocyclic-Based Analogues against Sarcine-Ricin Loop RNA from Escherichia coli: In Silico Molecular Docking Study and Machine Learning Classifiers. Med Chem 2024; 20:452-465. [PMID: 38333980 DOI: 10.2174/0115734064266329231228050535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Heterocyclic-based drugs have strong bioactivities, are active pharmacophores, and are used to design several antibacterial drugs. Due to the diverse biodynamic properties of well-known heterocyclic cores, such as quinoline, indole, and its derivatives, they have a special place in the chemistry of nitrogen-containing heterocyclic molecules. OBJECTIVES The objective of this study is to analyze the interaction of several heterocyclic molecules using molecular docking and machine learning approaches to find out the possible antibacterial drugs. METHODS The molecular docking analysis of heterocyclic-based analogues against the sarcin-Ricin Loop RNA from E. coli with a C2667-2'-OCF3 modification (PDB ID: 6ZYB) is discussed. RESULTS Many heterocyclic-based derivatives show several residual interaction, affinity, and hydrogen bonding with sarcin-Ricin Loop RNA from E. coli with a C2667-2'-OCF3 alteration which are identified by the investigation of in silico molecular docking analysis of such heterocyclic derivatives. CONCLUSION The dataset from the molecular docking study was used for additional optimum analysis, and the molecular descriptors were classified using a variety of machine learning classifiers, including the GB Classifier, CB Classifier, RF Classifier, SV Classifier, KNN Classifier, and Voting Classifier. The research presented here showed that heterocyclic derivatives may operate as potent antibacterial agents when combined with other compounds to produce highly efficient antibacterial agents.
Collapse
Affiliation(s)
- Shivangi Sharma
- Department of Applied Chemistry, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior-474 005, India
| | - Rahul Choubey
- Department of Computer Science and Engineering, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior-474 005, India
| | - Manish Gupta
- Department of Computer Science and Engineering, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior-474 005, India
| | - Shivendra Singh
- Department of Applied Chemistry, Amity School of Engineering & Technology, Amity University Madhya Pradesh, Maharajpura Dang, Gwalior-474 005, India
| |
Collapse
|
7
|
Li L, Ren AA, Gao S, Su YS, Yang J, Bockman J, Mericko-Ishizuka P, Griffin J, Shenkar R, Alcazar R, Moore T, Lightle R, DeBiasse D, Awad IA, Marchuk DA, Kahn ML, Burkhardt JK. mTORC1 Inhibitor Rapamycin Inhibits Growth of Cerebral Cavernous Malformation in Adult Mice. Stroke 2023; 54:2906-2917. [PMID: 37746705 PMCID: PMC10599232 DOI: 10.1161/strokeaha.123.044108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are vascular malformations that frequently cause stroke. CCMs arise due to loss of function in one of the genes that encode the CCM complex, a negative regulator of MEKK3-KLF2/4 signaling in vascular endothelial cells. Gain-of-function mutations in PIK3CA (encoding the enzymatic subunit of the PI3K (phosphoinositide 3-kinase) pathway associated with cell growth) synergize with CCM gene loss-of-function to generate rapidly growing lesions. METHODS We recently developed a model of CCM formation that closely reproduces key events in human CCM formation through inducible CCM loss-of-function and PIK3CA gain-of-function in mature mice. In the present study, we use this model to test the ability of rapamycin, a clinically approved inhibitor of the PI3K effector mTORC1, to treat rapidly growing CCMs. RESULTS We show that both intraperitoneal and oral administration of rapamycin arrests CCM growth, reduces perilesional iron deposition, and improves vascular perfusion within CCMs. CONCLUSIONS Our findings further establish this adult CCM model as a valuable preclinical model and support clinical testing of rapamycin to treat rapidly growing human CCMs.
Collapse
Affiliation(s)
- Lun Li
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Aileen A. Ren
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Siqi Gao
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Yourong S. Su
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jisheng Yang
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jenna Bockman
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Patricia Mericko-Ishizuka
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Joanna Griffin
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Roberto Alcazar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Issam A. Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA 27708
| | - Mark L. Kahn
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| |
Collapse
|
8
|
Borland JM, Dempsey DA, Peyla AC, Hall MAL, Kohut-Jackson AL, Mermelstein PG, Meisel RL. Aggression Results in the Phosphorylation of ERK1/2 in the Nucleus Accumbens and the Dephosphorylation of mTOR in the Medial Prefrontal Cortex in Female Syrian Hamsters. Int J Mol Sci 2023; 24:1379. [PMID: 36674893 PMCID: PMC9862940 DOI: 10.3390/ijms24021379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Like many social behaviors, aggression can be rewarding, leading to behavioral plasticity. One outcome of reward-induced aggression is the long-term increase in the speed in which future aggression-based encounters is initiated. This form of aggression impacts dendritic structure and excitatory synaptic neurotransmission in the nucleus accumbens, a brain region well known to regulate motivated behaviors. Yet, little is known about the intracellular signaling mechanisms that drive these structural/functional changes and long-term changes in aggressive behavior. This study set out to further elucidate the intracellular signaling mechanisms regulating the plasticity in neurophysiology and behavior that underlie the rewarding consequences of aggressive interactions. Female Syrian hamsters experienced zero, two or five aggressive interactions and the phosphorylation of proteins in reward-associated regions was analyzed. We report that aggressive interactions result in a transient increase in the phosphorylation of extracellular-signal related kinase 1/2 (ERK1/2) in the nucleus accumbens. We also report that aggressive interactions result in a transient decrease in the phosphorylation of mammalian target of rapamycin (mTOR) in the medial prefrontal cortex, a major input structure to the nucleus accumbens. Thus, this study identifies ERK1/2 and mTOR as potential signaling pathways for regulating the long-term rewarding consequences of aggressive interactions. Furthermore, the recruitment profile of the ERK1/2 and the mTOR pathways are distinct in different brain regions.
Collapse
Affiliation(s)
| | - Desarae A. Dempsey
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna C. Peyla
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Megan A. L. Hall
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert L. Meisel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|