1
|
Paolino M, Saletti M, Venditti J, Zacchei A, Donati A, Bonechi C, Giuliani G, Lamponi S, Cappelli A. Synthesis and Reactivity of Oligo(ethylene glycol)-Tethered Morita-Baylis-Hillman Dimers in the Formation of Macrocyclic Structures Showing Remarkable Cytotoxicity. Pharmaceuticals (Basel) 2025; 18:473. [PMID: 40283910 PMCID: PMC12030125 DOI: 10.3390/ph18040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Crown ethers have received increasing interest owing to their ability to form stable complexes with cations. This molecular feature has been successfully exploited in the development of biologically relevant ionophores. Methods: In order to obtain innovative crown ethers derivatives, a Morita-Baylis-Hillman adduct (MBHA) acetate (4) bearing a phenylacetylene moiety was dimerized via the click-chemistry CuAAC reaction with oligo(ethylene glycol) diazide derivatives to build-up a small series of dimeric MBHA derivatives (5a-d). These dimeric MBHA derivatives were reacted with n-butylamine to afford tunable macrocyclic crown ether-paracyclophane hybrid architectures (6a-d). Results: Compounds (E,Z)-6a, (E,E)-6a, 6b-d showed, in human breast cancer MDA-MB-231 and human melanoma A375 cells, IC50 values comparable with those of reference anticancer agent Doxorubicin. Conclusions: This exploration approach provides original new macrocyclic architectures potentially useful as anticancer agents.
Collapse
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy (A.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Nemati F, Ata Bahmani Asl A, Salehi P. Synthesis and modification of noscapine derivatives as promising future anticancer agents. Bioorg Chem 2024; 153:107831. [PMID: 39321713 DOI: 10.1016/j.bioorg.2024.107831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Noscapine, a tetrahydroisoquinoline alkaloid, was first isolated from Papaver somniferum and identified by Rabiquet in 1817. It has been used as an anti-tussive agent since the mid-1950 s. After the discovery of its anti-mitotic potential, it was into the limelight once again. Due to its low toxicity, high bioactivity and oral administration, It was regarded as a formidable framework for subsequent modification and advancement in the pursuit of innovative chemotherapeutic agents. Up to now, the rational derivatives of the noscapine have been designed and the biological activities of these analogues have been extensively investigated. This review provides a comprehensive examination of the chemical characteristics of noscapine and its semi-synthetic derivatives up to the present, encompassing a concise investigation into the biological properties of these compounds and additionally a discussion about biosynthesis and total synthesis of noscapine is also provided. In summary, our aim is to contribute to a more thorough comprehension of this structure. It can be asserted that a promising future lies ahead for noscapine and its engineered derivatives as noteworthy candidates for pharmaceutical drugs.
Collapse
Affiliation(s)
- Faezeh Nemati
- Department of Synthesis of Medicinal Organic Compounds, Institute of Medicinal Chemistry, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran
| | - Amir Ata Bahmani Asl
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran, Iran.
| |
Collapse
|
3
|
AYKANAT S, TÜRKTAŞ M. Divergent proteomic profiles of opium poppy cultivars. Turk J Biol 2024; 48:80-90. [PMID: 38665780 PMCID: PMC11042869 DOI: 10.55730/1300-0152.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/27/2024] [Accepted: 02/06/2024] [Indexed: 04/28/2024] Open
Abstract
We examined the proteomic profiles of three registered opium poppy cultivars (Papaver somniferum L.) with varying alkaloid contents. The study was conducted on both the stem and capsule organs. A high number of differentially expressed proteins (DEPs) were identified between the cultivars and the organs. We analyzed DEPs for their contribution in GO terms and KEGG pathways. The upregulated DEPs were significantly enriched in photosynthesis and translation for morphine-rich and noscapine-rich cultivars, respectively. The data indicated that photosynthesis is crucial for benzylisoquinoline alkaloid (BIA) biosynthesis, but different processes are also effective in morphine and noscapine biosynthesis, which occur at different branches in the biosynthetic pathway. The proteomics profiles revealed that energy demand is more effective in morphine biosynthesis, while translational control plays a leading role in noscapine biosynthesis. This study represents the first report demonstrating organ-based and cultivar-based protein expression differences in mature poppy plants.
Collapse
Affiliation(s)
- Setenay AYKANAT
- Department of Biology, Faculty of Science, Gazi University, Ankara,
Turkiye
| | - Mine TÜRKTAŞ
- Department of Biology, Faculty of Science, Gazi University, Ankara,
Turkiye
| |
Collapse
|
4
|
Sangeeta, Sonaxi, Tomar R, Agrawal S, Sarkar A. 1,3‐Benzodioxole Tagged Lidocaine Based Ionic Liquids as Anticancer Drug: Synthesis, Characterization and
In Silico
Study. ChemistrySelect 2023. [DOI: 10.1002/slct.202204535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Sangeeta
- Department of Chemistry Netaji Subhas University of Technology, Dwarka Delhi 110078 India
| | - Sonaxi
- Department of Chemistry Baba Mastnath University, Rohtak Haryana 124021 India
| | - Ravi Tomar
- Department of Chemistry University Center for Research & Development Chandigarh University, Mohali Punjab 140413 India
- Department of Chemical Engineering IIT Delhi New Delhi-110016 India
| | - Swati Agrawal
- Department of Chemistry Motilal Nehru College University of Delhi New Delhi 110021 India
| | - Anjana Sarkar
- Department of Chemistry Netaji Subhas University of Technology, Dwarka Delhi 110078 India
| |
Collapse
|
5
|
Amaral A, Cebola N, Szóstek-Mioduchowska A, Rebordão MR, Kordowitzki P, Skarzynski D, Ferreira-Dias G. Inhibition of Myeloperoxidase Pro-Fibrotic Effect by Noscapine in Equine Endometrium. Int J Mol Sci 2023; 24:ijms24043593. [PMID: 36835008 PMCID: PMC9959736 DOI: 10.3390/ijms24043593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Myeloperoxidase is an enzyme released by neutrophils when neutrophil extracellular traps (NETs) are formed. Besides myeloperoxidase activity against pathogens, it was also linked to many diseases, including inflammatory and fibrotic ones. Endometrosis is a fibrotic disease of the mare endometrium, with a large impact on their fertility, where myeloperoxidase was shown to induce fibrosis. Noscapine is an alkaloid with a low toxicity, that has been studied as an anti-cancer drug, and more recently as an anti-fibrotic molecule. This work aims to evaluate noscapine inhibition of collagen type 1 (COL1) induced by myeloperoxidase in equine endometrial explants from follicular and mid-luteal phases, at 24 and 48 h of treatment. The transcription of collagen type 1 alpha 2 chain (COL1A2), and COL1 protein relative abundance were evaluated by qPCR and Western blot, respectively. The treatment with myeloperoxidase increased COL1A2 mRNA transcription and COL1 protein, whereas noscapine was able to reduce this effect with respect to COL1A2 mRNA transcription, in a time/estrous cycle phase-dependent manner (in explants from the follicular phase, at 24 h of treatment). Our study indicates that noscapine is a promising drug to be considered as an anti-fibrotic molecule to prevent endometrosis development, making noscapine a strong candidate to be applied in future endometrosis therapies.
Collapse
Affiliation(s)
- Ana Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Department of Zootechnics, School of Sciences and Technology (ECT), University of Évora, 7002-554 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), 7000-811 Évora, Portugal
- Correspondence:
| | - Nélio Cebola
- Faculty of Veterinary Medicine, Universidade Lusofona, 1749-024 Lisbon, Portugal
- Veterinary Teaching Hospital of the University of Extremadura, 10003 Cáceres, Spain
| | - Anna Szóstek-Mioduchowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland
| | - Maria Rosa Rebordão
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Polytechnic of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Paweł Kordowitzki
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, ul. Gagarina 1, 87-100 Torun, Poland
| | - Dariusz Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|