1
|
Nidoieva Z, Sabin MO, Dewald T, Weldert AC, Hoba SN, Helm M, Barthels F. A microscale thermophoresis-based enzymatic RNA methyltransferase assay enables the discovery of DNMT2 inhibitors. Commun Chem 2025; 8:32. [PMID: 39900960 PMCID: PMC11790956 DOI: 10.1038/s42004-025-01439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
RNA methyltransferases (MTases) have recently become increasingly important in drug discovery. Yet, most frequently utilized RNA MTase assays are limited in their throughput and hamper this rapidly evolving field of medicinal chemistry. This study developed a microscale thermophoresis (MST)-based split aptamer assay for enzymatic MTase investigations, improving current methodologies by offering a non-proprietary, cost-effective, and highly sensitive approach. Our findings demonstrate the assay's effectiveness across different RNA MTases, including inhibitor characterization of METTL3/14, DNMT2, NSUN2, and S. aureus TrmD, enabling future drug discovery efforts. Using this concept, a pilot screening on the cancer drug target DNMT2 discovered several hit compounds with micromolar potency.
Collapse
Affiliation(s)
- Zarina Nidoieva
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Mark O Sabin
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Tristan Dewald
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Annabelle C Weldert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Mainz, Germany.
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Meidner JL, Frey AF, Zimmermann RA, Sabin MO, Nidoieva Z, Weldert AC, Hoba SN, Krone MW, Barthels F. Nanomole Scale Screening of Fluorescent RNA-Methyltransferase Probes Enables the Discovery of METTL1 Inhibitors. Angew Chem Int Ed Engl 2024; 63:e202403792. [PMID: 39145518 DOI: 10.1002/anie.202403792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
RNA methylation is a metabolic process validated for its association with various diseases, and thus, RNA methyltransferases (MTases) have become increasingly important in drug discovery. Yet, most frequently utilized RNA MTase assays are limited in their throughput and hamper this rapidly evolving field of medicinal chemistry. In this study, we describe a modular nanomole scale building block system that allowed the identification of tailored fluorescent MTase probes to unlock a broad selection of MTase drug targets for fluorescence-based binding assays. Probe candidates were initially prepared on a 4 nanomole scale and could be tested directly from crude reaction mixtures to allow rapid probe identification and optimization. Using an alkyne-azide click late-stage functionalization strategy and in silico protein databank mining, we established a selection of fluorescent probes suitable for relevant drug targets from the METTL and NSUN families, as well as bacterial and viral MTases. Using this concept, a high-throughput screening on the unexplored drug target METTL1 discovered three hit compounds with micromolar potency providing a (1H-pyrazol-4-yl)pyridine-based starting point for METTL1 drug discovery.
Collapse
Affiliation(s)
- J Laurenz Meidner
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Ariane F Frey
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Mark O Sabin
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Zarina Nidoieva
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Annabelle C Weldert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Mackenzie W Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128, Mainz, Germany
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
3
|
Li D, Liu Y, Yang G, He M, Lu L. Recent insights into RNA m5C methylation modification in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189223. [PMID: 39577751 DOI: 10.1016/j.bbcan.2024.189223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
RNA 5-methylcytosine (m5C) methylation involves the addition of a methyl (-CH3) group to the cytosine (C) base within an RNA molecule, forming the m5C modification. m5C plays a role in numerous essential biological processes, including the regulation of RNA stability, nuclear export, and protein translation. Recent studies have highlighted the importance of m5C in the pathogenesis of various diseases, particularly tumors. Emerging evidence indicates that RNA m5C methylation is intricately implicated in the mechanisms underlying hepatocellular carcinoma (HCC). Dysregulation of m5C-associated regulatory factors is common in HCC and shows significant associations with prognosis, treatment response, and clinicopathological features. This review provides an in-depth analysis of the components and functions of m5C regulators, particularly emphasizing their research advancements in the context of HCC.
Collapse
Affiliation(s)
- Danyang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China
| | - Guang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China
| | - Mingyu He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong Province 519000, PR China; Guangzhou First Pepople's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China.
| |
Collapse
|
4
|
Kairys V, Baranauskiene L, Kazlauskiene M, Zubrienė A, Petrauskas V, Matulis D, Kazlauskas E. Recent advances in computational and experimental protein-ligand affinity determination techniques. Expert Opin Drug Discov 2024; 19:649-670. [PMID: 38715415 DOI: 10.1080/17460441.2024.2349169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Pal S, Nare Z, Rao VA, Smith BO, Morrison I, Fitzgerald EA, Scott A, Bingham MJ, Pesnot T. Accelerating BRPF1b hit identification with BioPhysical and Active Learning Screening (BioPALS). ChemMedChem 2024; 19:e202300590. [PMID: 38372199 DOI: 10.1002/cmdc.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
We report the development of BioPhysical and Active Learning Screening (BioPALS); a rapid and versatile hit identification protocol combining AI-powered virtual screening with a GCI-driven biophysical confirmation workflow. Its application to the BRPF1b bromodomain afforded a range of novel micromolar binders with favorable ADMET properties. In addition to the excellent in silico/in vitro confirmation rate demonstrated with BRPF1b, binding kinetics were determined, and binding topologies predicted for all hits. BioPALS is a lean, data-rich, and standardized approach to hit identification applicable to a wide range of biological targets.
Collapse
Affiliation(s)
- Sandeep Pal
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Zandile Nare
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Vincenzo A Rao
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Brian O Smith
- University of Glasgow, School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, G12 8QQ, Glasgow, UK
| | - Ian Morrison
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | | | - Andrew Scott
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Matilda J Bingham
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| | - Thomas Pesnot
- Concept Life Sciences, Frith Knoll Road, Chapel-en-le-Frith, SK23 0PG, High Peak, UK
| |
Collapse
|
6
|
Lewinska A, Adamczyk-Grochala J, Wnuk M. TRDMT1-mediated RNA C-5 methylation as a novel target in anticancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188964. [PMID: 37625528 DOI: 10.1016/j.bbcan.2023.188964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Affected landscape of RNA modifications is frequently observed in different cancer cells that can be associated with the development of cancer cell phenotypic traits such as sustained proliferation, migration and invasion, apoptosis resistance and metabolic reprograming. DNMT2/TRDMT1 5-methylcytosine methyltransferase, initially classified as DNA methyltransferase, can methylate both tRNA and mRNA promoting tRNA stability and proper protein synthesis, and orchestrating DNA damage response (DDR) and DNA stability, respectively. TRDMT1 is associated with cancer progression as its levels can be elevated and its mutations can be observed in a number of cancer types. TRDMT1 gene knockout (KO) can sensitize cancer cells of different origin to radiotherapy and chemotherapy. In the present review paper, based on literature data, the physiological and pathophysiological roles of TRDMT1 in different biological systems are described with the emphasis on human normal and cancer cells. Potential TRDMT1 substrates, inhibitors and regulatory mechanisms of catalytic activity and cellular localization are also presented and evaluated. TRDMT1 as a novel promising target in anticancer therapy is proposed and discussed.
Collapse
Affiliation(s)
- Anna Lewinska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Jagoda Adamczyk-Grochala
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Maciej Wnuk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| |
Collapse
|
7
|
Schwickert M, Zimmermann RA, Habeck T, Hoba SN, Nidoieva Z, Fischer TR, Stark MM, Kersten C, Lermyte F, Helm M, Schirmeister T. Covalent S-Adenosylhomocysteine-Based DNA Methyltransferase 2 Inhibitors with a New Type of Aryl Warhead. ACS Med Chem Lett 2023; 14:777-787. [PMID: 37312859 PMCID: PMC10258905 DOI: 10.1021/acsmedchemlett.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/15/2023] Open
Abstract
The DNA methyltransferase 2 (DNMT2) is an RNA modifying enzyme associated with pathophysiological processes, such as mental and metabolic disorders or cancer. Although the development of methyltransferase inhibitors remains challenging, DNMT2 is not only a promising target for drug discovery, but also for the development of activity-based probes. Here, we present covalent SAH-based DNMT2 inhibitors decorated with a new type of aryl warhead. Based on a noncovalent DNMT2 inhibitor with N-benzyl substituent, the Topliss scheme was followed for optimization. The results showed that electron-deficient benzyl moieties highly increased affinity. By decorating the structures with strong electron-withdrawing moieties and leaving groups, we adjusted the electrophilicity to create covalent DNMT2 inhibitors. A 4-bromo-3-nitrophenylsulfonamide-decorated SAH derivative (80) turned out to be the most potent (IC50 = 1.2 ± 0.1 μM) and selective inhibitor. Protein mass spectrometry confirmed the covalent reaction with the catalytically active cysteine-79.
Collapse
Affiliation(s)
- Marvin Schwickert
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Robert A. Zimmermann
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tanja Habeck
- Technical
University of Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Sabrina N. Hoba
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Zarina Nidoieva
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tim R. Fischer
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Martin M. Stark
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Christian Kersten
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Frederik Lermyte
- Technical
University of Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Mark Helm
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, D-55128 Mainz, Germany
| |
Collapse
|
8
|
Zimmermann RA, Fischer TR, Schwickert M, Nidoieva Z, Schirmeister T, Kersten C. Chemical Space Virtual Screening against Hard-to-Drug RNA Methyltransferases DNMT2 and NSUN6. Int J Mol Sci 2023; 24:ijms24076109. [PMID: 37047081 PMCID: PMC10094593 DOI: 10.3390/ijms24076109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Targeting RNA methyltransferases with small molecules as inhibitors or tool compounds is an emerging field of interest in epitranscriptomics and medicinal chemistry. For two challenging RNA methyltransferases that introduce the 5-methylcytosine (m5C) modification in different tRNAs, namely DNMT2 and NSUN6, an ultra-large commercially available chemical space was virtually screened by physicochemical property filtering, molecular docking, and clustering to identify new ligands for those enzymes. Novel chemotypes binding to DNMT2 and NSUN6 with affinities down to KD,app = 37 µM and KD,app = 12 µM, respectively, were identified using a microscale thermophoresis (MST) binding assay. These compounds represent the first molecules with a distinct structure from the cofactor SAM and have the potential to be developed into activity-based probes for these enzymes. Additionally, the challenges and strategies of chemical space docking screens with special emphasis on library focusing and diversification are discussed.
Collapse
Affiliation(s)
- Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Marvin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Zarina Nidoieva
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|