1
|
Siritapetawee J, Hua Y, Talabnin C, Naewwan N, Charoenwattanasatien R, Phoovasawat C, Srichan S, Kantachot C. Potential for application of direct thrombin inhibitors isolated from Euphorbia resinifera O.Berg latex in fibrin clot formation. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1253:124480. [PMID: 39879729 DOI: 10.1016/j.jchromb.2025.124480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Direct thrombin inhibitors (designated as EuRL-DTIs) were partially purified from ethanol extracts of Euphorbia resinifera O.Berg latex. The obtained EuRL-DTIs comprised four major compounds: two isomers of phenolic compounds (C19H26O12) and two amide compounds (tentatively identified as C24H44N4O4 and C36H66N6O6), as identified by liquid chromatography and electrospray ionisation quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, and/or nuclear magnetic resonance (NMR) spectroscopy. The effects of EuRL-DTIs on human thrombin-induced fibrin clot production were analysed using thrombin time, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), synchrotron radiation X-ray tomographic microscopy (SRXTM), and scanning electron microscopy (SEM). Kinetic studies revealed that EuRL-DTIs inhibited human thrombin from cleaving the chromogenic substrate S2238, with a Ki of 3.7 μg/mL, in a non-competitive inhibition manner. All results supported the hypothesis that the EuRL-DTIs directly abolished thrombin activity in the production of fibrin clots without requiring a cofactor. The cytotoxicity test showed that EuRL-DTIs were nontoxic to normal human foetal lung fibroblasts (IMR-90). Thus, EuRL-DTIs have potential as antithrombotic agents for application as drugs for thrombosis treatments or in medical devices such as coating surgical sutures.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| | - Yanling Hua
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chutima Talabnin
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nopporn Naewwan
- Translational Medicine Program, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | | | - Supawan Srichan
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Chortip Kantachot
- Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| |
Collapse
|
2
|
Imberg L, Siutkina AI, Erbacher C, Schmidt J, Broekmans DF, Ovsepyan RA, Daniliuc CG, Gonçalves de Oliveira E, Serafim MSM, O’Donoghue AJ, Pillaiyar T, Panteleev MA, Poso A, Kalinina SA, Bermúdez M, Nekipelov K, Bendas G, Karst U, Kalinin DV. Pyrazinyl-Substituted Aminoazoles as Covalent Inhibitors of Thrombin: Synthesis, Structure, and Anticoagulant Properties. ACS Pharmacol Transl Sci 2025; 8:146-172. [PMID: 39816788 PMCID: PMC11730114 DOI: 10.1021/acsptsci.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/18/2025]
Abstract
This study presents a novel series of N-acylated 1,2,4-triazol-5-amines and 1H-pyrazol-5-amines, featuring a pyrazin-2-yl moiety, developed as covalent inhibitors of thrombin. These compounds demonstrated potent inhibitory activity, with derivatives 13a and 13b achieving IC50 values as low as 0.7 and 0.8 nM, respectively. Mass-shift assays confirmed that these inhibitors covalently bind to the catalytic Ser195 of thrombin, leading to temporary inhibition of its activity through specific acylation. The anticoagulant efficacy of these compounds was validated in plasma coagulation assays, with selected derivatives extending coagulation times in both an activated partial thromboplastin time (aPTT) and prothrombin time (PT) test. Thrombin generation assays further demonstrated that compounds of this series effectively reduced thrombin generation without substantially prolonging clotting times, suggesting a lower risk of bleeding. Selected compounds also strongly inhibited cancer cell- and thrombin-induced platelet aggregation. These results indicate that acylated aminoazoles hold a promise as new anticoagulants.
Collapse
Affiliation(s)
- Lukas Imberg
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Alena I. Siutkina
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Catharina Erbacher
- Institute of Inorganic and Analytical Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Judith Schmidt
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Darius F. Broekmans
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Ruzanna A. Ovsepyan
- Center for Theoretical Problems of
Physicochemical Pharmacology, Russian Academy of Sciences, 119991 Moscow,
Russia
| | | | - Ellen Gonçalves de Oliveira
- Center for Discovery and Innovation in Parasitic
Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University
of California, La Jolla, San Diego, California 92093, United
States
- Department of Microbiology, Institute of Biological Sciences,
Federal University of Minas Gerais, 31270-901 Belo Horizonte,
Minas Gerais, Brazil
| | - Mateus Sá Magalhães Serafim
- Center for Discovery and Innovation in Parasitic
Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University
of California, La Jolla, San Diego, California 92093, United
States
- Department of Microbiology, Institute of Biological Sciences,
Federal University of Minas Gerais, 31270-901 Belo Horizonte,
Minas Gerais, Brazil
| | - Anthony J. O’Donoghue
- Center for Discovery and Innovation in Parasitic
Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University
of California, La Jolla, San Diego, California 92093, United
States
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry, Eberhard Karls University Tübingen, 72076
Tübingen, Germany
- Tübingen Center for Academic Drug
Discovery (TüCAD2), 72076 Tübingen,
Germany
| | - Mikhail A. Panteleev
- Center for Theoretical Problems of
Physicochemical Pharmacology, Russian Academy of Sciences, 119991 Moscow,
Russia
- Laboratory of Translational Medicine,
Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and
Immunology, 117997 Moscow, Russia
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences,
University of Eastern Finland, 70211 Kuopio,
Finland
- Department of Internal Medicine VIII,
University Hospital Tübingen, 72076 Tübingen,
Germany
| | | | - Marcel Bermúdez
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Katrin Nekipelov
- Pharmaceutical Institute, University
of Bonn, 53121 Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, University
of Bonn, 53121 Bonn, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry,
University of Münster, 48149 Münster,
Germany
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry,
University of Münster, 48149 Münster,
Germany
| |
Collapse
|
3
|
Schiedel M, Barbie P, Pape F, Pinto M, Unzue Lopez A, Méndez M, Hessler G, Merk D, Gehringer M, Lamers C. We are MedChem: The Frontiers in Medicinal Chemistry 2024. ChemMedChem 2024; 19:e202400543. [PMID: 39308157 DOI: 10.1002/cmdc.202400543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 12/06/2024]
Abstract
The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in Germany and took place from March 17th to 20th 2024 in Munich. Co-organized by the Division of Medicinal Chemistry of the German Chemical Society (Gesellschaft Deutscher Chemiker; GDCh) and the Division of Pharmaceutical and Medicinal Chemistry of the German Pharmaceutical Society (Deutsche Pharmazeutische Gesellschaft; DPhG), and supported by a local organizing committee from the Ludwigs-Maximilians-University Munich headed by Daniel Merk, the meeting brought together approximately 225 participants from 20 countries. The outstanding program of the four-day conference included 40 lectures by leading scientists from industry and academia as well as early career investigators. Moreover, 100 posters were presented in two highly interactive poster sessions.
Collapse
Affiliation(s)
- Matthias Schiedel
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Philipp Barbie
- Bayer AG, R&D, Pharmaceuticals Laboratory IV, Bldg., S106, 231, 13342, Berlin, Germany
| | - Felix Pape
- NUVISAN GmbH, Muellerstraße 178, 13353, Berlin, Germany
| | - Marta Pinto
- AbbVie Deutschland GmbH & Co. KG Computational Drug Discovery, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Andrea Unzue Lopez
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - María Méndez
- Sanofi R&D, Integrated Drug Discovery Industriepark Höchst, Bldg. G838, 65926, Frankfurt am Main, Germany
| | - Gerhard Hessler
- Sanofi R&D, Integrated Drug Discovery Industriepark Höchst, Bldg. G838, 65926, Frankfurt am Main, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Matthias Gehringer
- Institute for Biomedical Engineering, Faculty of Medicine, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Pharmaceutical/Medicinal Chemistry Department, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Christina Lamers
- Institute of Drug Discovery, Faculty of Medicine, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Fischle A, Schreiber U, Haupt V, Schimang F, Schürmann L, Behrens M, Hübner F, Esselen M, Kalinin DV, Kalinina SA. Biological evaluation of semi-synthetic isoindolinone isomers produced by Stachybotrys chartarum. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1494795. [PMID: 39650337 PMCID: PMC11621054 DOI: 10.3389/ffunb.2024.1494795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The filamentous fungus Stachybotrys chartarum is rich in meroterpenoid secondary metabolites, some of which carry o-dialdehyde moieties, which are readily derivatized to isoindolinones by addition of primary amines. The structural diversity of phenylspirodrimanes, in particular, is linked to a wide range of biological activities, making them ideal candidates for semi-synthetic modification. In this study, acetoxystachybotrydial acetate was reacted with l-tryptophan and tryptamine, resulting in the detection of both regiospecific isomeric structures - a rare and significant finding that enabled the examination of four novel reaction products. Besides their successful purification, a detailed report on their isomer-specific behavior with regard to chromatographic retention, UV-spectral specificities, nuclear magnetic resonances, and mass spectrometric fragmentation is given. Furthermore, a comprehensive insight into each compounds' unique effect within the tested biological assays is provided, which include cytotoxicity, genotoxicity, their biological activity against serine proteases of the blood coagulation cascade, and in vitro hepatic metabolism, always in comparison to the non-derivatized substance. Ultimately, each isomer can be distinguished already during the purification process, which extends to the biological assays where we present one less cytotoxic, faster metabolized, and more active regio-isomeric phenylspirodrimane-derivative.
Collapse
Affiliation(s)
- Alica Fischle
- Instititue of Food Chemistry, University of Münster, Münster, Germany
- Graduate School of Natural Products, University of Münster, Münster, Germany
| | - Ulrich Schreiber
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Viola Haupt
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Felix Schimang
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Lina Schürmann
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Matthias Behrens
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Florian Hübner
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Melanie Esselen
- Instititue of Food Chemistry, University of Münster, Münster, Germany
| | - Dmitrii V. Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Svetlana A. Kalinina
- Instititue of Food Chemistry, University of Münster, Münster, Germany
- Graduate School of Natural Products, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Winge T, Imberg L, Perry B, Matheeussen A, Caljon G, Kalinin D, Wünsch B. N-Pyrazolyl- and N-Triazolylamines and -Ureas as Antileishmanial and Antitrypanosomal Drugs. ChemMedChem 2024; 19:e202400220. [PMID: 38687962 DOI: 10.1002/cmdc.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Three types of modifications of antileishmanial pyrazole lead compounds 7 and 8 were conducted to expand understanding of the relationships between structural features and antileishmanial/antitrypanosomal activity: (1) the pyrazole core was retained or replaced by a 1,2,4-triazole ring; (2) various aryl moieties including 2-fluorophenyl, pyridin-3-yl and pyrazin-2-yl rings were attached at 3-position of the core azole; (3) either arylmethylamino or ureido substituents were introduced at 5-position of the azole core. The synthesis followed established routes starting with esters 9 or 15 and anhydride 21. The synthesized 3-arylpyrazoles and 3-aryl-1,2,4-triazoles had only very low antileishmanial activity. The 2-fluorophenyl-substituted pyrazole 18c revealed the highest antileishmanial activity of this series of compounds, but its IC50 value (20 μM) still indicates low activity. However, low micromolar antitrypanosomal activity was detected for the pyridin-3-yl-substituted pyrazoles 12b (IC50=4.7 μM) and 14a (IC50=2.1 μM). Their IC50 values are comparable with the IC50 values of the reference compounds benznidazole and nifurtimox. Whereas only low unspecific cytotoxicity at the primary peritoneal mouse macrophages (PMM) was detected, considerable cytotoxicity at MRC-5 human fibroblast cells was found for both pyrazoles 12b an 14a. The activity of pyrazole 12b against T. cruzi is 4-fold higher than its unspecific MRC-5 cytotoxicity.
Collapse
Affiliation(s)
- Tobias Winge
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Lukas Imberg
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Ben Perry
- Drugs for Neglected Diseases initiative, 15 chemin Camille-Vidart, 1202, Geneva, Switzerland
- current Address: Medicxi Ventures, 10 Cours de Rive, 1204, Geneva, Switzerland
| | - An Matheeussen
- University of Antwerpen, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, Campus CDE, S7.24, Universiteitsplein 1, B-2610, Wilrijk-Antwerpen
| | - Guy Caljon
- University of Antwerpen, Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, Campus CDE, S7.24, Universiteitsplein 1, B-2610, Wilrijk-Antwerpen
| | - Dmitrii Kalinin
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Universität Münster, Corrensstr. 48, D-48149, Münster, Germany
| |
Collapse
|
6
|
Meng Z, Wang S, Chen F, Zhang Z, Zhang Y, Yin Z, Duan Y, Zheng N, Wang Q, Liao C, Chen Y, Xie Z. Discovery of Highly Selective, Potent, Covalent, and Orally Bioavailable Factor XIIa Inhibitors for the Treatment of Thrombo-Inflammation. J Med Chem 2024; 67:10946-10966. [PMID: 38913497 DOI: 10.1021/acs.jmedchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Thrombo-inflammation is closely associated with a few severe cardiovascular and infectious diseases. Factor XIIa (FXIIa) in the intrinsic coagulation pathway plays a pivotal role in the development of thrombo-inflammation and its inhibition has emerged as a potential therapeutic approach for thrombo-inflammatory disorders. Nonetheless, as of now, few small-molecule FXIIa inhibitors have demonstrated notable effectiveness against thrombo-inflammation, with none progressing into clinical stages. Herein, we present potent, covalent, reversible, and selective small-molecule FXIIa inhibitors such as 4a and 4j obtained through structure-based drug design. Compounds 4a and 4j showed significant anticoagulation and substantial anti-inflammatory effects in vitro, coupled with exceptional plasma stability. Furthermore, in carrageenan-induced thrombosis models, 4a and 4j demonstrated remarkable dual antithrombotic and anti-inflammatory activity when administered orally. Compound 4j exhibited a favorable safety profile without obvious tissue toxicity in mice, suggesting its potential as an oral therapeutic option for thrombo-inflammation.
Collapse
Affiliation(s)
- Zhiwei Meng
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shengnan Wang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fangrong Chen
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhenzhen Zhang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajing Zhang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zequn Yin
- The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Yajun Duan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Nan Zheng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuanli Chen
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Woodland M, Thompson A, Lipford A, Goyal N, Schexnaildre JC, Mottamal M, Afosah DK, Al-Horani RA. New Triazole-Based Potent Inhibitors of Human Factor XIIa as Anticoagulants. ACS OMEGA 2024; 9:10694-10708. [PMID: 38463342 PMCID: PMC10918664 DOI: 10.1021/acsomega.3c09335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Factor XIIa (FXIIa) functions as a plasma serine protease within the contact activation pathway. Various animal models have indicated a substantial role for FXIIa in thromboembolic diseases. Interestingly, individuals and animals with FXII deficiency seem to maintain normal hemostasis. Consequently, inhibiting FXIIa could potentially offer a viable therapeutic approach for achieving effective and safer anticoagulation without the bleeding risks associated with the existing anticoagulants. Despite the potential, only a limited number of small molecule inhibitors targeting human FXIIa have been documented. Thus, we combined a small library of 32 triazole and triazole-like molecules to be evaluated for FXIIa inhibition by using a chromogenic substrate hydrolysis assay under physiological conditions. Initial screening at 200 μM involved 18 small molecules, revealing that 4 molecules inhibited FXIIa more than 20%. In addition to being the most potent inhibitor identified in the first round, inhibitor 8 also exhibited a substantial margin of selectivity against related serine proteases, including factors XIa, Xa, and IXa. However, the molecule also inhibited thrombin with a similar potency. It also prolonged the clotting time of human plasma, as was determined in the activated partial thromboplastin time and prothrombin time assays. Subsequent structure-activity relationship studies led to the identification of several inhibitors with submicromolar activity, among which inhibitor 22 appears to demonstrate significant selectivity not only over factors IXa, Xa, and XIa, but also over thrombin. In summary, this study introduces novel triazole-based small molecules, specifically compounds 8 and 22, identified as potent and selective inhibitors of human FXIIa. The aim is to advance these inhibitors for further development as anticoagulants to provide a more effective and safer approach to preventing and/or treating thromboembolic diseases.
Collapse
Affiliation(s)
- Ma’Lik
D. Woodland
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Anthony Thompson
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Amanda Lipford
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Navneet Goyal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - John C. Schexnaildre
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Madhusoodanan Mottamal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Daniel K. Afosah
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rami A. Al-Horani
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
8
|
Erbacher C, Athmer M, Kröger E, Dahrendorf L, Imberg L, Kalinin DV, Karst U. An automated analysis method enabling the screening of covalent thrombin and factor XIIa inhibitors via liquid chromatography-mass spectrometry. Drug Test Anal 2024; 16:314-322. [PMID: 37482900 DOI: 10.1002/dta.3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
An automated sample preparation and separation method for the analysis of various enzyme-inhibitor combinations using liquid chromatography (LC) coupled to mass spectrometry (MS) is presented. As conventional anticoagulants have several drawbacks, the most severe being the elevated risk of internal bleedings, it is necessary to develop new-generation anticoagulants with reduced side effects. Therefore, the screening of potential inhibitors against anticoagulation targets like thrombin and FXIIa is important to design a potent and selective inhibitor. To facilitate the analysis of numerous enzyme-inhibitor covalent complexes, automation of the analysis using an LC system with a user-defined injection sequence is helpful. The developed method ensures comparable reaction conditions like reaction time and temperature for all enzyme-inhibitor complexes. Furthermore, it prevents time-consuming manual sample preparation and potential manual errors. To achieve good reproducibility with relative standard deviation of approximately 3% for three-fold determination, multiple cleaning steps were added to the automated sample preparation. Subsequently, this method was applied to screen a variety of 15 aminopyrazole- and aminotriazole-based inhibitors with a covalent mechanism of action against thrombin and to test two covalent inhibitors for FXIIa. Successful complex formation and acylation of the catalytic center of the enzymes was monitored using deconvoluted mass spectra and the matching mass shifts of the acyl moiety of the analyzed inhibitors. The inhibitors' structure directly influenced reaction yields. Sterically demanding aminotriazoles and acyl moieties both affected the product formation negatively. However, the screening yielded several promising candidates for new covalent thrombin inhibitors, which might find their application as prospective anticoagulants.
Collapse
Affiliation(s)
- Catharina Erbacher
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Mathis Athmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Erik Kröger
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Laureen Dahrendorf
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Lukas Imberg
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Dmitrii V Kalinin
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
9
|
Davoine C, Traina A, Evrard J, Lanners S, Fillet M, Pochet L. Coumarins as factor XIIa inhibitors: Potency and selectivity improvements using a fragment-based strategy. Eur J Med Chem 2023; 259:115636. [PMID: 37478556 DOI: 10.1016/j.ejmech.2023.115636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Previously, we described weak coumarin inhibitors of factor XIIa, a promising target for artificial surface-induced thrombosis and various inflammatory diseases. In this work, we used fragment-based drug discovery approach to improve our coumarin series. First, we screened about 200 fragments for the S1 pocket. The S1 pocket of trypsin-like serine proteases, such as factor XIIa, is highly conserved and is known to drive a major part of the association energy. From the screening, we selected fragments displaying a micromolar activity and studied their selectivity on other serine proteases. Then, these fragments were merged to our coumarin templates, leading to the generation of nanomolar inhibitors. The mechanism of inhibition was further studied by mass spectrometry demonstrating the covalent binding through the formation of an acyl enzyme complex. The most potent compound was tested in plasma to evaluate its stability and efficacy on coagulation assays. It exhibited a plasmatic half-life of 1.9 h and a good selectivity for the intrinsic coagulation pathway over the extrinsic one.
Collapse
Affiliation(s)
- Clara Davoine
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place Du 20 Août 7, 4000, Liège, Belgium
| | - Amandine Traina
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Jonathan Evrard
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Steve Lanners
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place Du 20 Août 7, 4000, Liège, Belgium
| | - Lionel Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
10
|
Yoshida Y, Ida H, Mino T, Sakamoto M. Formal [3 + 2] Cycloaddition of α-Imino Esters with Azo Compounds: Facile Construction of Pentasubstituted 1,2,4-Triazoline Skeletons. Molecules 2023; 28:molecules28114339. [PMID: 37298816 DOI: 10.3390/molecules28114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
1,2,4-Triazole and 1,2,4-triazoline are important components of bioactive molecules and catalysts employed in organic synthesis. Therefore, the efficient synthesis of these components has received significant research attention. However, studies on their structural diversity remain lacking. Previously, we developed chiral phase-transfer-catalyzed asymmetric reactions of α-imino carbonyl compounds with α,β-unsaturated carbonyl compounds and haloalkanes. In this study, we demonstrate the formal [3 + 2] cycloaddition reaction of α-imino esters with azo compounds under Brønsted base catalysis, resulting in the corresponding 1,2,4-triazolines in high yields. The results revealed that a wide range of substrates and reactants can be applied, irrespective of their steric and electronic characteristics. The present reaction made the general preparation of 3-aryl pentasubstituted 1,2,4-triazolines possible for the first time. Furthermore, a mechanistic study suggested that the reaction proceeds without isomerization into the aldimine form.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Hidetoshi Ida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Takashi Mino
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Masami Sakamoto
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| |
Collapse
|
11
|
Siutkina A, Kalinina S, Liu R, Heitman LH, Junker A, Daniliuc CG, Kalinin DV. Microwave-Assisted Synthesis, Structure, and Preliminary Biological Evaluation of Novel 6-Methoxy-5,6-dihydro-5-azapurines. ACS OMEGA 2023; 8:14097-14112. [PMID: 37091407 PMCID: PMC10116508 DOI: 10.1021/acsomega.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
We herein disclose the microwave-assisted synthesis of previously unreported 6-methoxy-5,6-dihydro-5-azapurines, whose purine-like scaffold is promising for drug discovery. The method is simple, fast, and relies on easily accessible reagents such as trimethyl orthoformate, acetic acid, and aminotriazole-derived N,N'-disubstituted formamidines. The preliminary biological evaluation revealed that selected representatives of synthesized 6-methoxy-5,6-dihydro-5-azapurines dose-dependently reduce the viability of HepG2 and A549 cancer cells having little to no influence on five tested purinergic receptors.
Collapse
Affiliation(s)
- Alena
I. Siutkina
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Svetlana Kalinina
- Institute
of Food Chemistry, University of Münster, 48149 Münster, Germany
| | - Rongfang Liu
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 CC Leiden, The Netherlands
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Drug Discovery
and Safety, Leiden University, 2333 CC Leiden, The Netherlands
| | - Anna Junker
- European
Institute for Molecular Imaging (EIMI), University of Münster, 48149 Münster, Germany
| | | | - Dmitrii V. Kalinin
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|