1
|
Greene CL, Traeger G, Venkatesh A, Han D, Majesky MW. Origins of Aortic Coarctation: A Vascular Smooth Muscle Compartment Boundary Model. J Dev Biol 2025; 13:13. [PMID: 40265371 PMCID: PMC12015864 DOI: 10.3390/jdb13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Compartment boundaries divide the embryo into segments with distinct fates and functions. In the vascular system, compartment boundaries organize endothelial cells into arteries, capillaries, and veins that are the fundamental units of a circulatory network. For vascular smooth muscle cells (SMCs), such boundaries produce mosaic patterns of investment based on embryonic origins with important implications for the non-uniform distribution of vascular disease later in life. The morphogenesis of blood vessels requires vascular cell movements within compartments as highly-sensitive responses to changes in fluid flow shear stress and wall strain. These movements underline the remodeling of primitive plexuses, expansion of lumen diameters, regression of unused vessels, and building of multilayered artery walls. Although the loss of endothelial compartment boundaries can produce arterial-venous malformations, little is known about the consequences of mislocalization or the failure to form SMC-origin-specific boundaries during vascular development. We propose that the failure to establish a normal compartment boundary between cardiac neural-crest-derived SMCs of the 6th pharyngeal arch artery (future ductus arteriosus) and paraxial-mesoderm-derived SMCs of the dorsal aorta in mid-gestation embryos leads to aortic coarctation observed at birth. This model raises new questions about the effects of fluid flow dynamics on SMC investment and the formation of SMC compartment borders during pharyngeal arch artery remodeling and vascular development.
Collapse
Affiliation(s)
- Christina L. Greene
- Heart Center, Seattle Children’s Hospital, Seattle, WA 98112, USA;
- Department of Surgery, School of Medicine, University of Washington, Seattle, WA 98105, USA
- Norcliffe Foundation Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
| | - Geoffrey Traeger
- Norcliffe Foundation Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
| | - Akshay Venkatesh
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98105, USA;
| | - David Han
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Department of Cell Biology & Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Mark W. Majesky
- Heart Center, Seattle Children’s Hospital, Seattle, WA 98112, USA;
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA 98101, USA;
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
2
|
Guo B, Yan X, Wang Z, Shen C, Chen W, Cen S, Peng Q, Zhang Z. Enhanced Pyridine-Oxazoline Ligand-Enabled Pd(II)-Catalyzed Aminoacetoxylation of Alkenes for the Asymmetric Synthesis of Biaryl-Bridged 7-Membered N-Heterocycles and Atropisomers. J Am Chem Soc 2025; 147:12614-12626. [PMID: 40167529 DOI: 10.1021/jacs.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A new class of binaphthyl unit-enhanced pyridine-oxazoline ligands was developed to promote the Pd-catalyzed enantioselective intramolecular 7-exo aminoacetoxylation of unactivated biaryl alkenes. Biaryl-bridged 7-membered N-heterocycles bearing a chiral center were obtained in good yields with excellent enantioselectivities (up to 99:1 er). Computational investigations on a series of biaryl-bridged 7-membered rings provided insights into the rotational barrier of the potentially chiral biaryl unit by the substituent effect including the heteroatom, the protecting group, and the chiral center. The kinetic resolution of racemic axially chiral biaryls via intramolecular enantioselective aminoacetoxylation of alkenes has also been achieved, affording previously inaccessible biaryl-bridged 7-membered N-heterocycles bearing both a chiral center and a chiral axis, as well as axially chiral biaryl amino alcohols.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xiaoyang Yan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zicong Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Weifu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Obisi JN, Abimbola ANJ, Babaleye OA, Atidoglo PK, Usin SG, Nwanaforo EO, Patrick-Inezi FS, Fasogbon IV, Chimezie J, Dare CA, Kuti OO, Uti DE, Omeoga HC. Unveiling the future of cancer stem cell therapy: a narrative exploration of emerging innovations. Discov Oncol 2025; 16:373. [PMID: 40120008 PMCID: PMC11929669 DOI: 10.1007/s12672-025-02102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer stem cells (CSCs), are a critical subpopulation within tumours, and are defined by their capacity for self-renewal, differentiation, and tumour initiation. These unique traits contribute to tumour progression, metastasis, and resistance to conventional treatments like chemotherapy and radiotherapy, often resulting in cancer recurrence and poor patient outcomes. As such, CSCs have become focal points in developing advanced cancer therapies. This review highlights progress in CSC-targeted treatments, including chimeric antigen receptor T-cell (CAR-T) therapy, immunotherapy, molecular targeting, and nanoparticle-based drug delivery systems. Plant-derived compounds and gene-editing technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR), are explored for their potential to enhance precision and minimize side effects. Metabolic pathways integral to CSC survival, such as mitochondrial dynamics, mitophagy (regulated by dynamin-related protein 1 [DRP1] and the PINK1/Parkin pathway), one-carbon metabolism, amino acid metabolism (involving enzymes like glutaminase (GLS) and glutamate dehydrogenase (GDH]), lipid metabolism, and hypoxia-induced metabolic reprogramming mediated by hypoxia-inducible factors (HIF-1α and HIF-2α), are examined as therapeutic targets. The adaptability of CSCs through autophagy, metabolic flexibility, and epigenetic regulation by metabolites like α-ketoglutarate, succinate, and fumarate is discussed. Additionally, extracellular vesicles and nicotinamide adenine dinucleotide (NAD⁺) metabolism are identified as pivotal in redox balance, DNA repair, and epigenetic modifications. Addressing challenges such as tumour heterogeneity, immune evasion, and treatment durability requires interdisciplinary collaboration. Advancing CSC-targeted therapies is essential for overcoming drug resistance and preventing cancer relapse, paving the way for transformative cancer treatments. This review underscores the importance of leveraging innovative technologies and fostering collaboration to revolutionize cancer treatment.
Collapse
Affiliation(s)
| | | | - Oluwasegun Adesina Babaleye
- Center for Human Virology and Genomics, Department of Microbiology, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Peter Kwame Atidoglo
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Saviour God'swealth Usin
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Eudora Obioma Nwanaforo
- Environmental Health Science Department, School of Heath Technology, Federal University of Technology Owerri, Owerri, Nigeria
| | | | | | - Joseph Chimezie
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Daniel Ejim Uti
- Department of Biochemistry/Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | | |
Collapse
|
4
|
Sarkar S, Kandasamy T, Ghosh SS. Imatinib Impedes EMT and Notch Signalling by Inhibiting p300 Acetyltransferase in Breast Cancer Cells. Mol Carcinog 2025; 64:344-356. [PMID: 39560382 DOI: 10.1002/mc.23848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Breast cancer remains a leading cause of cancer-related mortality among women, with current therapeutic approaches often limited by resistance and recurrence, especially in aggressive subtypes like triple-negative breast cancer. Drug repurposing has emerged as a promising strategy to address these challenges. In this study, we investigate the potential of Imatinib, a repurposed tyrosine kinase inhibitor, to inhibit epithelial-mesenchymal transition (EMT) in breast cancer cells by modulating the Notch signalling pathway. Our findings reveal that Imatinib treatment leads to a significant reduction in cancer cell stemness, invasiveness, and migration potential, alongside decreased colony-forming ability. EMT reversal was marked by a 2.71-fold increase in E-cadherin expression, with concurrent downregulation of mesenchymal markers, including Fibronectin (1.78-fold) and Slug (2.15-fold). Mechanistically, Imatinib was found to inhibit p300 acetyltransferase activity, resulting in reduced levels of H3K18Ac and H3K27Ac, which in turn led to the downregulation of key Notch pathway proteins such as HES1 (2.94-fold), AKT (2.08-fold), and p21 (1.88-fold). These results highlight the ability of Imatinib to suppress EMT through modulation of the Notch signalling pathway, offering a novel therapeutic avenue for breast cancer treatment. Overall, Imatinib demonstrates considerable potential for repurposing in breast cancer management by targeting critical oncogenic pathways involved in EMT and cancer progression.
Collapse
Affiliation(s)
- Shilpi Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
5
|
Yao K, Zhan XY, Feng M, Yang KF, Zhou MS, Jia H. Furin, ADAM, and γ-secretase: Core regulatory targets in the Notch pathway and the therapeutic potential for breast cancer. Neoplasia 2024; 57:101041. [PMID: 39208688 PMCID: PMC11399603 DOI: 10.1016/j.neo.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The activation of the Notch pathway promotes the occurrence and progression of breast cancer. The Notch signal plays different roles in different molecular subtypes of breast cancer. In estrogen receptor-positive (ER+) breast cancer, the Notch pathway regulates the activity of estrogen receptors. In human epidermal growth factor receptor 2-positive (HER2+) breast cancer, crosstalk between Notch and HER2 enhances HER2 signal expression. In triple-negative breast cancer (TNBC), Notch pathway activation is closely linked to tumor invasion and drug resistance. This article offers a comprehensive review of the structural domains, biological functions, and key targets of Notch with a specific focus on the roles of Furin protease, ADAM metalloprotease, and γ-secretase in breast cancer and their potential as therapeutic targets. We discuss the functions and mutual regulatory mechanisms of these proteinases in the Notch pathway as well as other potential targets in the Notch pathway, such as the glycosylation process and key transcription factors. This article also introduces new approaches in the treatment of breast cancer, with a special focus on the molecular characteristics and treatment response differences of different subtypes. We propose that the core regulatory molecules of the Notch pathway may become key targets for development of personalized treatment, which may significantly improve treatment outcomes and prognosis for patients with breast cancer.
Collapse
Affiliation(s)
- Kuo Yao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Xiang-Yi Zhan
- School of Traditional Chinese Medicine, Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| | - Mei Feng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Ke-Fan Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Ming-Sheng Zhou
- Shenyang Key Laboratory of Vascular Biology, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China; Science and Experimental Research Center of Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| | - Hui Jia
- Shenyang Key Laboratory of Vascular Biology, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China; School of Traditional Chinese Medicine, Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| |
Collapse
|
6
|
Jia Y, Liu Y, Yang H, Yao F. Adenoid cystic carcinoma: insights from molecular characterization and therapeutic advances. MedComm (Beijing) 2024; 5:e734. [PMID: 39263605 PMCID: PMC11387731 DOI: 10.1002/mco2.734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Adenoid cystic carcinoma (ACC) is a malignant tumor primarily originating from the salivary glands, capable of affecting multiple organs. Although ACC typically exhibits slow growth, it is notorious for its propensity for neural invasion, local recurrence, and distant metastasis, making it a particularly challenging cancer to treat. The complexity of ACC's histological and molecular features poses significant challenges to current treatment modalities, which often show limited effectiveness. Recent advancements in single-cell RNA-sequencing (scRNA-seq) have begun to unravel unprecedented insights into the heterogeneity and subpopulation diversity within ACC, revealing distinct cellular phenotypes and origins. This review delves into the intricate pathological and molecular characteristics of ACC, focusing on recent therapeutic advancements. We particularly emphasize the insights gained from scRNA-seq studies that shed light on the cellular landscape of ACC, underscoring its heterogeneity and pathobiology. Moreover, by integrating analyses from public databases, this review proposes novel perspectives for advancing treatment strategies in ACC. This review contributes to the academic understanding of ACC by proposing novel therapeutic approaches informed by cutting-edge molecular insights, paving the way for more effective, personalized therapeutic approaches for this challenging malignancy.
Collapse
Affiliation(s)
- Yunxuan Jia
- Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yupeng Liu
- Department of Thoracic Surgery Tumor Hospital Affiliated to Nantong University Nantong Tumor Hospital Nantong China
| | - Haitang Yang
- Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Feng Yao
- Department of Thoracic Surgery Shanghai Chest Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
7
|
Antar SA, ElMahdy MK, Darwish AG. Examining the contribution of Notch signaling to lung disease development. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6337-6349. [PMID: 38652281 DOI: 10.1007/s00210-024-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Notch pathway is a widely observed signaling system that holds pivotal functions in regulating various developmental cellular functions and operations. The Notch signaling mechanism is crucial for lung homeostasis, damage, and restoration. Based on increasing evidence, the Notch pathway has been identified, as critical for fibrosis and subsequently, the development of chronic fibroproliferative conditions in various organs and tissues. Recent research indicates that deregulation of Notch signaling correlates with the pathogenesis of significant pulmonary conditions, particularly chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, pulmonary arterial hypertension (PAH), lung carcinoma, and pulmonary abnormalities in some hereditary disorders. In various cellular and tissue environments, and across both physiological and pathological conditions, multiple consequences of Notch activation have been observed. Studies have ascertained that the Notch signaling cascade exhibits close associations with various other signaling systems. This study provides an updated overview of Notch signaling's role, especially its link to fibrosis and its potential therapeutic implications. This study sheds light on the latest findings regarding the mechanisms and outcomes of irregular or lacking Notch activity in the onset and development of pulmonary diseases. As our insight into this signaling mechanism suggests that modulating Notch signaling might hold potential as a valuable additional therapeutic approach in upcoming research.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA.
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt.
| | - Mohamed Kh ElMahdy
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| |
Collapse
|
8
|
Kanwal M, Polakova I, Olsen M, Kasi MK, Tachezy R, Smahel M. Heterogeneous Response of Tumor Cell Lines to Inhibition of Aspartate β-hydroxylase. J Cancer 2024; 15:3466-3480. [PMID: 38817852 PMCID: PMC11134442 DOI: 10.7150/jca.94452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Cancer development involves alterations in key cellular pathways, with aspartate β-hydroxylase (ASPH) emerging as an important player in tumorigenesis. ASPH is upregulated in various cancer types, where it promotes cancer progression mainly by regulating the Notch1 and SRC pathways. Methods: This study explored the responses of various human cervical, pharyngeal, and breast tumor cell lines to second- and third-generation ASPH inhibitors (MO-I-1151 and MO-I-1182) using proliferation, migration, and invasion assays; western blotting; and cell cycle analysis. Results: ASPH inhibition significantly reduced cell proliferation, migration, and invasion and disrupted both the canonical and noncanonical Notch1 pathways. The noncanonical pathway was particularly mediated by AKT signaling. Cell cycle analysis revealed a marked reduction in cyclin D1 expression, further confirming the inhibitory effect of ASPH inhibitors on cell proliferation. Additional analysis revealed G0/G1 arrest and restricted progression into S phase, highlighting the regulatory impact of ASPH inhibitors on the cell cycle. Furthermore, ASPH inhibition induced distinctive alterations in nuclear morphology. The high heterogeneity in the responses of individual tumor cell lines to ASPH inhibitors, both quantitatively and qualitatively, underscores the complex network of mechanisms that are regulated by ASPH and influence the efficacy of ASPH inhibition. The effects of ASPH inhibitors on Notch1 pathway activity, cyclin D1 expression, and nuclear morphology contribute to the understanding of the multifaceted effects of these inhibitors on cancer cell behavior. Conclusion: This study not only suggests that ASPH inhibitors are effective against tumor cell progression, in part through the induction of cell cycle arrest, but also highlights the diverse and heterogeneous effects of these inhibitors on the behavior of tumor cells of different origins.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ingrid Polakova
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy - Glendale, Midwestern University, Glendale, AZ, USA
| | - Murtaza Khan Kasi
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michal Smahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
9
|
Hussan SS, Ali MS, Fatima M, Altaf M, Sadaf S. Epigenetically dysregulated NOTCH-Delta-HES signaling cascade can serve as a subtype classifier for acute lymphoblastic leukemia. Ann Hematol 2024; 103:511-523. [PMID: 37922005 DOI: 10.1007/s00277-023-05515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2023]
Abstract
The NOTCH-Delta-HES signaling cascade is regarded as a double-edged sword owing to its dual tumor-suppressor and oncogenic roles, in different cellular environments. In the T-cells, it supports leukemogenesis by promoting differentiation while in B-cells, it controls leukemogenesis by inhibiting early differentiation/inducing growth arrest in the lead to apoptosis. The present study was undertaken to assess if this bi-faceted behavior of NOTCH family can be exploited as a diagnostic biomarker or subtype classifier of acute lymphoblastic leukemia (ALL). In this pursuit, expression of seven NOTCH cascade genes was analyzed in bone marrow (BM) biopsy and blood plasma (BP) of pediatric ALL patients using quantitative PCR (qPCR). Further, promoter DNA methylation status of the differentially expressed genes (DEGs) was assessed by methylation-specific qMSP and validated through bisulphite amplicon sequencing. Whereas hypermethylation of JAG1, DLL1, and HES-2, HES-4, and HES-5 was observed in all patients, NOTCH3 was found hypermethylated specifically in Pre-B ALL cases while DLL4 in Pre-T ALL cases. Aberrant DNA methylation strongly correlated with downregulated gene expression, which restored at complete remission stage as observed in "follow-up/post-treatment" subjects. The subtype-specific ROC curve analysis and Kaplan-Meier survival analysis predicted a clinically applicable diagnostic and prognostic potential of the panel. Moreover, the logistic regression model (Pre-B vs Pre-T ALL) was found to be the best-fitted model (McFadden's R2 = 0.28, F1 measure = 0.99). Whether analyzed in BM-aspirates or blood plasma, the NOTCH epigenetic signatures displayed comparable results (p < 0.001), advocating the potential of NOTCH-Delta-HES cascade, as a subtype classifier, in minimally invasive diagnosis of ALL.
Collapse
Affiliation(s)
- Syeda Saliah Hussan
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Shrafat Ali
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Mishal Fatima
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Memoona Altaf
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Saima Sadaf
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
10
|
Yuan N, Pan HH, Liang YS, Hu HL, Zhai CL, Wang B. Identification of prognostic and diagnostic signatures for cancer and acute myocardial infarction: multi-omics approaches for deciphering heterogeneity to enhance patient management. Front Pharmacol 2023; 14:1249145. [PMID: 37781709 PMCID: PMC10539594 DOI: 10.3389/fphar.2023.1249145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Patients diagnosed with cancer face an increased risk of cardiovascular events in the short term, while those experiencing acute myocardial infarction (AMI) have a higher incidence of cancer. Given limitations in clinical resources, identifying shared biomarkers offers a cost-effective approach to risk assessment by minimizing the need for multiple tests and screenings. Hence, it is crucial to identify common biomarkers for both cancer survival and AMI prediction. Our study suggests that monocyte-derived biomarkers, specifically WEE1, PYHIN1, SEC61A2, and HAL, hold potential as predictors for cancer prognosis and AMI. We employed a novel formula to analyze mRNA levels in clinical samples from patients with AMI and cancer, resulting in the development of a new risk score based on expression profiles. By categorizing patients into high-risk and low-risk groups based on the median risk score, we observed significantly poorer overall survival among high-risk patients in cancer cohorts using Kaplan-Meier analysis. Furthermore, calibration curves, decision curve analysis (DCA), and clinical impact curve analyses provided additional evidence supporting the robust diagnostic capacity of the risk score for AMI. Noteworthy is the shared activation of the Notch Signaling pathway, which may shed light on common high-risk factors underlying both AMI and cancer. Additionally, we validated the differential expression of these genes in cell lines and clinical samples, respectively, reinforcing their potential as meaningful biomarkers. In conclusion, our study demonstrates the promise of mRNA levels as biomarkers and emphasizes the significance of further research for validation and refinement.
Collapse
Affiliation(s)
- Na Yuan
- The First Hospital of Jiaxing Affiliated Hospitial of Jiaxing University, Jiaxing, Zhejiang, China
| | - Hai-Hua Pan
- The First Hospital of Jiaxing Affiliated Hospitial of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yan-Shan Liang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, China
| | - Hui-Lin Hu
- The First Hospital of Jiaxing Affiliated Hospitial of Jiaxing University, Jiaxing, Zhejiang, China
| | - Chang-Lin Zhai
- The First Hospital of Jiaxing Affiliated Hospitial of Jiaxing University, Jiaxing, Zhejiang, China
| | - Bo Wang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
11
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|