1
|
Marques L, Vale N. Improving Individualized Salbutamol Treatment: A Population Pharmacokinetic Model for Oral Salbutamol in Virtual Patients. Pharmaceutics 2024; 17:39. [PMID: 39861686 PMCID: PMC11768577 DOI: 10.3390/pharmaceutics17010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Salbutamol, a short-acting β2-agonist used in asthma treatment, is available in multiple formulations, including inhalers, nebulizers, oral tablets, and intravenous, intramuscular, and subcutaneous routes. Each formulation exhibits distinct pharmacokinetic (PK) and pharmacodynamic (PD) profiles, influencing therapeutic outcomes and adverse effects. Although asthma management predominantly relies on inhaled salbutamol, understanding how these formulations interact with patient-specific characteristics could improve personalized medicine approaches, potentially uncovering the therapeutic benefits of alternative formulations for an individual patient. Herein, this study aims to analyze how covariates-such as age, weight, gender, body surface area (BSA), cytochrome P450 (CYP) expression, race, and health status-affect the therapeutic regime of orally administered salbutamol using population PK (popPK) modeling. The final model is intended as a tool to support the selection of optimal formulation and dosage regimen based on individual patient profiles. METHODS A dataset of 40 virtual patients derived from a physiologically based PK (PBPK) model of oral salbutamol was included in the popPK model. RESULTS A two-compartment model with first-order elimination and absorption, with a transit compartment, best described the plasma concentration-time profile following a 4 mg dose. Relationships were identified between gender and mean transit time (Mtt) and clearance (Cl), as well as the effects of weight and BSA on the volume of distribution of the central compartment (V1) and Cl, and a significant impact of health status on Cl. CONCLUSIONS Despite current contraindications for oral salbutamol, our findings suggest that certain individuals, particularly children, may benefit from oral treatment over inhalation. We also identified individual characteristics associated with increased salbutamol toxicity risk, indicating the need for dose adjustment or alternative administration. This study further highlights the potential of popPK modeling in personalized therapy through a fully in silico approach.
Collapse
Affiliation(s)
- Lara Marques
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
2
|
Vigueras G, Muñoz-Gil L, Reinisch V, Pinto JT. A PopPBPK-RL approach for precision dosing of benazepril in renal impaired patients. J Pharmacokinet Pharmacodyn 2024; 52:6. [PMID: 39663294 DOI: 10.1007/s10928-024-09953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/19/2024] [Indexed: 12/13/2024]
Abstract
Current treatment recommendations mainly rely on rule-based protocols defined from evidence-based clinical guidelines, which are difficult to adapt for high-risk patients such as those with renal impairment. Consequently, unsuccessful therapies and the occurrence of adverse drug reactions are common. Within the context of personalized medicine, that tries to deliver the right treatment dose to maximize efficacy and minimize toxicity, the concept of model-informed precision dosing proposes the use of mechanistic models, like physiologically based pharmacokinetic (PBPK) modeling, to predict drug regimes outcomes. Nonetheless, PBPK models have limited capability when computing patients' centric optimized drug doses. Consequently, reinforcement learning (RL) has been previously used to personalize drug dosage. In this work we propose the first PBPK and RL-based precision dosing system for an orally taken drug (benazepril) considering a virtual population of patients with renal disease. Population based PBPK modeling is used in combination with RL for obtaining patient tailored dose regimes. We also perform patient stratification and feature selection to better handle dose tailoring problems. Based on patients' characteristics with best predictive capabilities, benazepril dose regimes are obtained for a population with features' diversity. Obtained regimes are evaluated based on PK parameters considered. Results show that the proof-of-concept approach herein is capable of learning good dosing regimes for most patients. The use of a PopPBPK model allowed to account for intervariability of patient characteristics and be more inclusive considering also non-frequent patients. Impact analysis of patients' features reveals that renal impairment is the main driver affecting RL capabilities.
Collapse
Affiliation(s)
- Guillermo Vigueras
- Universidad Politécnica de Madrid, 28040, Madrid, Spain.
- Center for Biomedical Technology, 28223, Madrid, Spain.
| | | | - Valerie Reinisch
- Research Center Pharmaceutical Engineering GmbH, 8010, Graz, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, 8010, Graz, Austria
| |
Collapse
|
4
|
Collier GE, Lavado R. An in-depth examination of Per- and Polyfluoroalkyl (PFAS) effects on transporters, with emphasis on the ABC superfamily: A critical review. Toxicology 2024; 508:153901. [PMID: 39094918 DOI: 10.1016/j.tox.2024.153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Per- and polyfluoroalkyl (PFAS) substances are a type of chemical compound unique for their multiple carbon-fluorine bonds, imbuing them with strength and environmental permanence. While legacy substances have been phased out due to human health risks, short-chain and alternative PFAS remain omnipresent. However, a detailed explanation for the pathways through which PFAS interact on a cellular and molecular level is still largely unknown, and the human health effects remain mechanistically unexplained. Of particular interest when focusing on this topic are the interactions between these exogenous chemicals and plasma and membrane proteins. Such proteins include serum albumin which can transport PFAS throughout the body, solute carrier proteins (SLC) and ATP binding cassette (ABC) transporters which are able to move PFAS into and out of cells, and proteins and nuclear receptors which interact with PFAS intracellularly. ABC transporters as a family have little available human data despite being responsible for the export of endogenous substances and drugs throughout the body. The multifactorial regulation of these crucial transporters is affected directly and indirectly by PFAS. Changes, which can include alterations to membrane transport activity and differences in protein expression, vary greatly depending on the specific PFAS and protein of interest. Together, the myriad of changes caused by understudied PFAS exposure to a class of understudied proteins crucial to cellular function and drug treatments has not been fully explored regarding human health and presents room for further exploration. This critical work aims to provide a novel framework of existing human data on PFAS and ABC transporters, allowing for future advancement and investigation into human transporter activity, mechanisms of regulation, and interactions with emerging contaminants.
Collapse
Affiliation(s)
- Gracen E Collier
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
5
|
Poojar B, Kamath A, Rao SB, Ullal SD, Ramapuram J, Yadiyal MB, Shenoy AK. A Prospective Study of the Medication Regimen Complexity Index and Hospitalization Due to Adverse Drug Reactions Among People Living with HIV. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1705. [PMID: 39459492 PMCID: PMC11509384 DOI: 10.3390/medicina60101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Background and Objective: The complexity of antiretroviral therapy (ART) regimens in people living with HIV (PLHIV) poses significant challenges for medication management, impacting adherence and overall health outcomes. The Medication Regimen Complexity Index (MRCI) is a tool that quantifies regimen complexity, yet its correlation with hospitalization rates and adverse drug reactions (ADRs) in PLHIV remains underexplored. Materials and Methods: This prospective study, which was conducted at a government-funded antiretroviral treatment center, investigated the relationships among MRCI scores, hospitalization due to ADRs, and the ADR rates in 285 PLHIV participants over 18 months. Results: The study revealed a significant association between higher baseline MRCI scores and hospitalization due to ADRs, with a threshold MRCI score of 8 indicating increased risk. There was no significant association between average MRCI scores and overall ADR rates or non-ADR-related hospitalizations. Conclusions: These findings emphasize the importance of monitoring medication regimen complexity in PLHIV, particularly in the context of preventing hospitalizations related to ADRs. Further research is needed to understand the multifactorial influences on ADR occurrence and to optimize ART regimens for better patient outcomes.
Collapse
Affiliation(s)
- Basavaraj Poojar
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (B.P.); (A.K.); (S.D.U.)
| | - Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (B.P.); (A.K.); (S.D.U.)
| | - Sathish B. Rao
- Department of General Medicine, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.B.R.); (M.B.Y.)
| | - Sheetal Dinkar Ullal
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (B.P.); (A.K.); (S.D.U.)
| | - John Ramapuram
- Department of General Medicine, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.B.R.); (M.B.Y.)
| | - Muralidhar B. Yadiyal
- Department of General Medicine, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.B.R.); (M.B.Y.)
| | - Ashok K. Shenoy
- Department of Pharmacology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (B.P.); (A.K.); (S.D.U.)
| |
Collapse
|
6
|
Sun M, Manson ML, Guo T, de Lange ECM. CNS Viral Infections-What to Consider for Improving Drug Treatment: A Plea for Using Mathematical Modeling Approaches. CNS Drugs 2024; 38:349-373. [PMID: 38580795 PMCID: PMC11026214 DOI: 10.1007/s40263-024-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) for these neurotropic viruses. Antiviral drugs should cross the blood-brain barrier/blood cerebrospinal fluid barrier and pass the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs within the CNS, to ultimately optimize the treatments of CNS viral infections.
Collapse
Affiliation(s)
- Ming Sun
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn L Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tingjie Guo
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
7
|
Islam MM, Rahman MF, Islam A, Afroz MS, Mamun MA, Rahman MM, Maniruzzaman M, Xu L, Sakamoto T, Takahashi Y, Sato T, Kahyo T, Setou M. Elucidating Gender-Specific Distribution of Imipramine, Chloroquine, and Their Metabolites in Mice Kidney Tissues through AP-MALDI-MSI. Int J Mol Sci 2024; 25:4840. [PMID: 38732055 PMCID: PMC11084644 DOI: 10.3390/ijms25094840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Knowledge of gender-specific drug distributions in different organs are of great importance for personalized medicine and reducing toxicity. However, such drug distributions have not been well studied. In this study, we investigated potential differences in the distribution of imipramine and chloroquine, as well as their metabolites, between male and female kidneys. Kidneys were collected from mice treated with imipramine or chloroquine and then subjected to atmospheric pressure matrix-assisted laser desorption ionization-mass spectrometry imaging (AP-MALDI-MSI). We observed differential distributions of the drugs and their metabolites between male and female kidneys. Imipramine showed prominent distributions in the cortex and medulla in male and female kidneys, respectively. Desipramine, one of the metabolites of imipramine, showed significantly higher (*** p < 0.001) distributions in the medulla of the male kidney compared to that of the female kidney. Chloroquine and its metabolites were accumulated in the pelvis of both male and female kidneys. Interestingly, they showed a characteristic distribution in the medulla of the female kidney, while almost no distributions were observed in the same areas of the male kidney. For the first time, our study revealed that the distributions of imipramine, chloroquine, and their metabolites were different in male and female kidneys.
Collapse
Affiliation(s)
- Md. Monirul Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - Md Foyzur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Mst. Sayela Afroz
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Md. Muedur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Md Maniruzzaman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Center, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| |
Collapse
|