1
|
Pavan M, Menin S, Dodaro A, Novello G, Cavastracci Strascia C, Sturlese M, Salmaso V, Moro S. Thermal Titration Molecular Dynamics: The Revenge of the Fragments. J Chem Inf Model 2025; 65:1492-1513. [PMID: 39835670 PMCID: PMC11815869 DOI: 10.1021/acs.jcim.4c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025]
Abstract
During the last 20 years, the fragment-based drug discovery approach gained popularity in both industrial and academic settings due to its efficient exploration of the chemical space. This bottom-up approach relies on identifying high-efficiency small ligands (fragments) that bind to a target binding site and then rationally evolve them into mature druglike compounds. To achieve such a task, researchers rely on accurate information about the ligand binding mode, usually obtained through experimental techniques, such as X-ray crystallography or computer simulations. However, the physicochemical characteristics of fragments limit the accuracy and reliability of computational predictions of their binding mode. This article presents a new Thermal Titration Molecular Dynamics (TTMD) protocol, a recently developed enhanced sampling method for qualitatively estimating protein-ligand-binding stability, specifically tuned for the refinement of fragment docking results. The protocol has been applied to eight pharmaceutically relevant targets on 12 different test cases, including ligands with very low molecular weight and structural complexity (MiniFrag/FragLites). In more than 80% of cases, TTMD successfully identified the native fragment binding mode among a set of docking poses, outperforming docking alone and proving to be a useful tool to assist the fragment screening and optimization process.
Collapse
Affiliation(s)
| | | | - Andrea Dodaro
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy
| | - Gianluca Novello
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy
| | - Chiara Cavastracci Strascia
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy
| | - Mattia Sturlese
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy
| | - Veronica Salmaso
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy
| | - Stefano Moro
- Molecular Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova 35131, Italy
| |
Collapse
|
2
|
Tosh DK, Pavan M, Clark AA, Lammers J, Villano S, Marri S, Sgambellone S, Choi S, Lee J, Ivancich MS, Bock HA, Campbell RG, Lewicki SA, Levitan IM, Chen E, Liu N, Demby T, Gavrilova O, Gao ZG, Lucarini L, McCorvy JD, Jacobson KA. Potent and Selective Human 5-HT 2B Serotonin Receptor Antagonists: 4'-Cyano-(N)-methanocarba-adenosines by Synthetic Serendipity. J Med Chem 2024; 67:21264-21291. [PMID: 39589936 PMCID: PMC11715225 DOI: 10.1021/acs.jmedchem.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Rigidified nucleoside derivatives with (N)-methanocarba replacement of ribose have been repurposed as peripheral subtype-selective 5-HT2B serotonin receptor antagonists for heart and lung fibrosis and intestinal/vascular conditions. 4'-Cyano derivative 40 (MRS8209; Ki, 4.27 nM) was 47-fold (human binding, but not rat and mouse) and 724-fold (functionally) selective at 5-HT2BR, compared to antitarget 5-HT2CR, and predicted to form a stable receptor complex using docking and molecular dynamics. 4'-Cyano substituents enhanced 5-HT2BR affinity (typically 4-5-fold compared to 4'-CH2OH), depending on an N6 group larger than methyl. Asymmetric N6 groups (4'-cyano-2-halo derivatives 33-35 and 37) provided potent 5-HT2BR Ki values (7-22 nM). A 4'-CH2CN substituent was less effective than 4'-CN at increasing 5-HT2BR affinity, while a 4'-CHF2 group produced high 5-HT2B affinity/selectivity. A 2-benzylthio-adenine group with unsubstituted 6-NH2 shifted the typical selectivity pattern toward potent 5-HT2C binding. Thus, the SAR suggests that N6-cyclopentyl-4'-cyano modifications are promising, with an interdependence among the substituent positions.
Collapse
Affiliation(s)
- Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Matteo Pavan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Allison A Clark
- Department of Cell Biology, Neurobiology, and Anatomy, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Josie Lammers
- Department of Cell Biology, Neurobiology, and Anatomy, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Serafina Villano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, Florence 50139, Italy
| | - Silvia Marri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, Florence 50139, Italy
| | - Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, Florence 50139, Italy
| | - Suebin Choi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jihyun Lee
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Marko S Ivancich
- Department of Cell Biology, Neurobiology, and Anatomy, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology, and Anatomy, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Ryan G Campbell
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sarah A Lewicki
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ian M Levitan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Eric Chen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tamar Demby
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale Gaetano Pieraccini, 6, Florence 50139, Italy
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Pradhan B, Pavan M, Fisher CL, Salmaso V, Wan TC, Keyes RF, Rollison N, Suresh RR, Kumar TS, Gao ZG, Smith BC, Auchampach JA, Jacobson KA. Lipid Trolling to Optimize A 3 Adenosine Receptor-Positive Allosteric Modulators (PAMs). J Med Chem 2024; 67:12221-12247. [PMID: 38959401 PMCID: PMC11636968 DOI: 10.1021/acs.jmedchem.4c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A3 adenosine receptor (A3AR) positive allosteric modulators (PAMs) (2,4-disubstituted-1H-imidazo[4,5-c]quinolin-4-amines) allosterically increase the Emax of A3AR agonists, but not potency, due to concurrent orthosteric antagonism. Following mutagenesis/homology modeling of the proposed lipid-exposed allosteric binding site on the cytosolic side, we functionalized the scaffold, including heteroatom substitutions and exocyclic phenylamine extensions, to increase allosteric binding. Strategically appended linear alkyl-alkynyl chains with terminal amino/guanidino groups improved allosteric effects at both human and mouse A3ARs. The chain length, functionality, and attachment position were varied to modulate A3AR PAM activity. For example, 26 (MRS8247, p-alkyne-linked 8 methylenes) and homologues increased agonist Cl-IB-MECA's Emax and potency ([35S]GTPγS binding). The putative mechanism involves a flexible, terminally cationic chain penetrating the lipid environment for stable electrostatic anchoring to cytosolic phospholipid head groups, suggesting "lipid trolling", supported by molecular dynamic simulation of the active-state model. Thus, we have improved A3AR PAM activity through rational design based on an extrahelical, lipidic binding site.
Collapse
Affiliation(s)
- Balaram Pradhan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Matteo Pavan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Courtney L Fisher
- Department of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Tina C Wan
- Department of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Robert F Keyes
- Department of Biochemistry and the Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Noah Rollison
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - T Santhosh Kumar
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Brian C Smith
- Department of Biochemistry and the Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - John A Auchampach
- Department of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|