1
|
Ko J, Lee J. Advanced microfluidic systems with temperature modulation for biological applications. BIOMICROFLUIDICS 2025; 19:031301. [PMID: 40322640 PMCID: PMC12048174 DOI: 10.1063/5.0251893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Recent advances in microfluidic technology have shown the importance of precise temperature control in a wide range of biological applications. This perspective review presents a comprehensive overview of state-of-the-art microfluidic platforms that utilize thermal modulation for various applications, such as rapid nucleic acid amplification, targeted hyperthermia for cancer therapy, and efficient cellular lysis. We detail various heating mechanisms-including nanoparticle-driven induction, photothermal conversion, and electrothermal approaches (both external and on-chip)-and discuss how they are integrated within lab-on-a-chip systems. In parallel, advanced multi-modal sensing methods within microfluidics, ranging from conventional integrated sensors to cutting-edge quantum-based techniques using nanodiamond nitrogen-vacancy centers and suspended microchannel resonators, are highlighted. By integrating advanced multi-modal sensing capabilities into these microfluidic platforms, a broader range of applications are enabled, including single-cell analysis, metabolic profiling, and scalable diagnostics. Looking ahead, overcoming challenges in system integration, scalability, and cost-effectiveness will be essential to harnessing their full potential. Future developments in this field are expected to drive the evolution of lab-on-a-chip technologies, ultimately enabling breakthroughs in precision medicine and high-throughput biomedical applications.
Collapse
Affiliation(s)
- J. Ko
- Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon-si, South Korea
| | - J. Lee
- Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon-si, South Korea
| |
Collapse
|
2
|
Wang L, Sheng M, Chen L, Yang F, Li C, Li H, Nie P, Lv X, Guo Z, Cao J, Wang X, Li L, Hu AL, Guan D, Du J, Cui H, Zheng X. Sub-Nanogram Resolution Measurement of Inertial Mass and Density Using Magnetic-Field-Guided Bubble Microthruster. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403867. [PMID: 38773950 PMCID: PMC11304303 DOI: 10.1002/advs.202403867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Indexed: 05/24/2024]
Abstract
Artificial micro/nanomotors using active particles hold vast potential in applications such as drug delivery and microfabrication. However, upgrading them to micro/nanorobots capable of performing precise tasks with sophisticated functions remains challenging. Bubble microthruster (BMT) is introduced, a variation of the bubble-driven microrobot, which focuses the energy from a collapsing microbubble to create an inertial impact on nearby target microparticles. Utilizing ultra-high-speed imaging, the microparticle mass and density is determined with sub-nanogram resolution based on the relaxation time characterizing the microparticle's transient response. Master curves of the BMT method are shown to be dependent on the viscosity of the solution. The BMT, controlled by a gamepad with magnetic-field guidance, precisely manipulates target microparticles, including bioparticles. Validation involves measuring the polystyrene microparticle mass and hollow glass microsphere density, and assessing the mouse embryo mass densities. The BMT technique presents a promising chip-free, real-time, highly maneuverable strategy that integrates bubble microrobot-based manipulation with precise bioparticle mass and density detection, which can facilitate microscale bioparticle characterizations such as embryo growth monitoring.
Collapse
Affiliation(s)
- Leilei Wang
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Minjia Sheng
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Li Chen
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Fengchang Yang
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Chenlu Li
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Hangyu Li
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Pengcheng Nie
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xinxin Lv
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Zheng Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Jialing Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiaohuan Wang
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Long Li
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Anthony L. Hu
- The High School Affiliated to Renmin University of ChinaBeijing100080China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Haihang Cui
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Xu Zheng
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| |
Collapse
|
3
|
High-throughput determination of dry mass of single bacterial cells by ultrathin membrane resonators. Commun Biol 2022; 5:1227. [PMID: 36369276 PMCID: PMC9651879 DOI: 10.1038/s42003-022-04147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
How bacteria are able to maintain their size remains an open question. Techniques that can measure the biomass (dry mass) of single cells with high precision and high-throughput are demanded to elucidate this question. Here, we present a technological approach that combines the transport, guiding and focusing of individual bacteria from solution to the surface of an ultrathin silicon nitride membrane resonator in vacuum. The resonance frequencies of the membrane undergo abrupt variations at the instants where single cells land on the membrane surface. The resonator design displays a quasi-symmetric rectangular shape with an extraordinary capture area of 0.14 mm2, while maintaining a high mass resolution of 0.7 fg (1 fg = 10−15 g) to precisely resolve the dry mass of single cells. The small rectangularity of the membrane provides unprecedented frequency density of vibration modes that enables to retrieve the mass of individual cells with high accuracy by specially developed inverse problem theory. We apply this approach for profiling the dry mass distribution in Staphylococcus epidermidis and Escherichia coli cells. The technique allows the determination of the dry mass of single bacterial cells with an accuracy of about 1% at an unparalleled throughput of 20 cells/min. Finally, we revisit Koch & Schaechter model developed during 60 s to assess the intrinsic sources of stochasticity that originate cell size heterogeneity in steady-state populations. The results reveal the importance of mass resolution to correctly describe these mechanisms. A technological approach combines transport, guiding and focusing of individual bacteria from solution to ultrathin membrane resonators for dry mass determination of single cells with accuracy within 1% and throughput of 20 cells/min.
Collapse
|
4
|
Daryani MM, Manzaneque T, Wei J, Ghatkesar MK. Measuring nanoparticles in liquid with attogram resolution using a microfabricated glass suspended microchannel resonator. MICROSYSTEMS & NANOENGINEERING 2022; 8:92. [PMID: 36051745 PMCID: PMC9424202 DOI: 10.1038/s41378-022-00425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The use of nanoparticles has been growing in various industrial fields, and concerns about their effects on health and the environment have been increasing. Hence, characterization techniques for nanoparticles are essential. Here, we present a silicon dioxide microfabricated suspended microchannel resonator (SMR) to measure the mass and concentration of nanoparticles in a liquid as they flow. We measured the mass detection limits of the device using laser Doppler vibrometry. This limit reached a minimum of 377 ag that correspond to a 34 nm diameter gold nanoparticle or a 243 nm diameter polystyrene particle, when sampled every 30 ms. We compared the fundamental limits of the measured data with an ideal noiseless measurement of the SMR. Finally, we measured the buoyant mass of gold nanoparticles in real-time as they flowed through the SMR.
Collapse
Affiliation(s)
- Mehdi Mollaie Daryani
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Tomás Manzaneque
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
- Present Address: Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Jia Wei
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Murali Krishna Ghatkesar
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
5
|
Abreu CM, Costa-Silva B, Reis RL, Kundu SC, Caballero D. Microfluidic platforms for extracellular vesicle isolation, analysis and therapy in cancer. LAB ON A CHIP 2022; 22:1093-1125. [PMID: 35253032 DOI: 10.1039/d2lc00006g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are small lipidic particles packed with proteins, DNA, messenger RNA and microRNAs of their cell of origin that act as critical players in cell-cell communication. These vesicles have been identified as pivotal mediators in cancer progression and the formation of metastatic niches. Hence, their isolation and analysis from circulating biofluids is envisioned as the next big thing in the field of liquid biopsies for early non-invasive diagnosis and patient follow-up. Despite the promise, current benchtop isolation strategies are not compatible with point-of-care testing in a clinical setting. Microfluidic platforms are disruptive technologies capable of recovering, analyzing, and quantifying EVs within clinical samples with limited volume, in a high-throughput manner with elevated sensitivity and multiplexing capabilities. Moreover, they can also be employed for the controlled production of synthetic EVs and effective drug loading to produce EV-based therapies. In this review, we explore the use of microfluidic platforms for the isolation, characterization, and quantification of EVs in cancer, and compare these platforms with the conventional methodologies. We also highlight the state-of-the-art in microfluidic approaches for EV-based cancer therapeutics. Finally, we analyze the currently active or recently completed clinical trials involving EVs for cancer diagnosis, treatment or therapy monitoring and examine the future of EV-based point-of-care testing platforms in the clinic and EV-based therapy production by the industry.
Collapse
Affiliation(s)
- Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, Av. Brasília, 1400-038, Lisbon, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
6
|
Katsikis G, Hwang IE, Wang W, Bhat VS, McIntosh NL, Karim OA, Blus BJ, Sha S, Agache V, Wolfrum JM, Springs SL, Sinskey AJ, Barone PW, Braatz RD, Manalis SR. Weighing the DNA Content of Adeno-Associated Virus Vectors with Zeptogram Precision Using Nanomechanical Resonators. NANO LETTERS 2022; 22:1511-1517. [PMID: 35148107 DOI: 10.1021/acs.nanolett.1c04092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantifying the composition of viral vectors used in vaccine development and gene therapy is critical for assessing their functionality. Adeno-associated virus (AAV) vectors, which are the most widely used viral vectors for in vivo gene therapy, are typically characterized using PCR, ELISA, and analytical ultracentrifugation which require laborious protocols or hours of turnaround time. Emerging methods such as charge-detection mass spectroscopy, static light scattering, and mass photometry offer turnaround times of minutes for measuring AAV mass using optical or charge properties of AAV. Here, we demonstrate an orthogonal method where suspended nanomechanical resonators (SNR) are used to directly measure both AAV mass and aggregation from a few microliters of sample within minutes. We achieve a precision near 10 zeptograms which corresponds to 1% of the genome holding capacity of the AAV capsid. Our results show the potential of our method for providing real-time quality control of viral vectors during biomanufacturing.
Collapse
Affiliation(s)
- Georgios Katsikis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Iris E Hwang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wade Wang
- BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
| | - Vikas S Bhat
- BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
| | - Nicole L McIntosh
- BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
| | - Omair A Karim
- BioMarin Pharmaceutical, Inc., Novato, California 94949, United States
| | - Bartlomiej J Blus
- BioMarin Pharmaceutical, Inc., San Rafael, California 94901, United States
| | - Sha Sha
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vincent Agache
- Université Grenoble Alpes, CEA, LETI, 38000, Grenoble, France
| | - Jacqueline M Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony J Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Richard D Braatz
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Piffoux M, Silva AKA, Gazeau F, Salmon H. Potential of on‐chip analysis and engineering techniques for extracellular vesicle bioproduction for therapeutics. VIEW 2022. [DOI: 10.1002/viw.20200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Max Piffoux
- Department of Medical Oncology Centre Léon Bérard Lyon France
- INSERM UMR 1197‐Interaction cellules souches‐niches: physiologie tumeurs et réparation tissulaire Villejuif France
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Hugo Salmon
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
- Université de Paris, T3S, INSERM Paris France
| |
Collapse
|
8
|
Kumemura M, Pekin D, Menon VA, Van Seuningen I, Collard D, Tarhan MC. Fabricating Silicon Resonators for Analysing Biological Samples. MICROMACHINES 2021; 12:1546. [PMID: 34945396 PMCID: PMC8708134 DOI: 10.3390/mi12121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
The adaptability of microscale devices allows microtechnologies to be used for a wide range of applications. Biology and medicine are among those fields that, in recent decades, have applied microtechnologies to achieve new and improved functionality. However, despite their ability to achieve assay sensitivities that rival or exceed conventional standards, silicon-based microelectromechanical systems remain underutilised for biological and biomedical applications. Although microelectromechanical resonators and actuators do not always exhibit optimal performance in liquid due to electrical double layer formation and high damping, these issues have been solved with some innovative fabrication processes or alternative experimental approaches. This paper focuses on several examples of silicon-based resonating devices with a brief look at their fundamental sensing elements and key fabrication steps, as well as current and potential biological/biomedical applications.
Collapse
Affiliation(s)
- Momoko Kumemura
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0196, Japan;
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
| | - Deniz Pekin
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Vivek Anand Menon
- Division of Mechanical Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan;
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Dominique Collard
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
| | - Mehmet Cagatay Tarhan
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts-de-France, UMR 8520—IEMN, Institut
d’Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France
| |
Collapse
|
9
|
Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators. Nat Commun 2021; 12:6080. [PMID: 34667168 PMCID: PMC8526607 DOI: 10.1038/s41467-021-26353-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
The extreme miniaturization in NEMS resonators offers the possibility to reach an unprecedented resolution in high-performance mass sensing. These very low limits of detection are related to the combination of two factors: a small resonator mass and a high quality factor. The main drawback of NEMS is represented by the highly complex, multi-steps, and expensive fabrication processes. Several alternatives fabrication processes have been exploited, but they are still limited to MEMS range and very low-quality factor. Here we report the fabrication of rigid NEMS resonators with high-quality factors by a 3D printing approach. After a thermal step, we reach complex geometry printed devices composed of ceramic structures with high Young’s modulus and low damping showing performances in line with silicon-based NEMS resonators ones. We demonstrate the possibility of rapid fabrication of NEMS devices that present an effective alternative to semiconducting resonators as highly sensitive mass and force sensors. NEMS devices, nano-electro-mechanical systems, by virtue of their minute size, offer ultra-high sensitivity, though at the expense of manufacturing complexity. Here, Stassi et al succeed in manufacturing high quality factor NEMS devices using high resolution 3D printing.
Collapse
|
10
|
Ko J, Jeong J, Son S, Lee J. Cellular and biomolecular detection based on suspended microchannel resonators. Biomed Eng Lett 2021; 11:367-382. [PMID: 34616583 DOI: 10.1007/s13534-021-00207-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
Suspended microchannel resonators (SMRs) have been developed to measure the buoyant mass of single micro-/nanoparticles and cells suspended in a liquid. They have significantly improved the mass resolution with the aid of vacuum packaging and also increased measurement throughput by fast resonance frequency tracking while target objects travel through the microchannel without stopping or even slowing down. Since their invention, various biological applications have been enabled, including simultaneous measurements of cell growth and cell cycle progression, and measurements of disease associated physicochemical change, to name a few. Extension and advancement towards other promising applications with SMRs are continuously ongoing by adding multiple functionalities or incorporating other complementary analytical metrologies. In this paper, we will thoroughly review the development history, basic and advanced operations, and key applications of SMRs to introduce them to researchers working in biological and biomedical sciences who mostly rely on classical and conventional methodologies. We will also provide future perspectives and projections for SMR technologies.
Collapse
Affiliation(s)
- Juhee Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| | - Jaewoo Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| | - Sukbom Son
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| | - Jungchul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| |
Collapse
|
11
|
Abstract
Rotational dynamics often challenge physical intuition while enabling unique realizations, from the rotor of a gyroscope that maintains its orientation regardless of the outer gimbals, to a tennis racket that rotates around its handle when tossed face-up in the air. In the context of inertial sensing, which can measure mass with atomic precision, rotational dynamics are normally considered a complication hindering measurement interpretation. Here, we exploit the rotational dynamics of a microfluidic device to develop a modality in inertial sensing. Combining theory with experiments, we show that this modality measures the volume of a rigid particle while normally being insensitive to its density. Paradoxically, particle density only emerges when fluid viscosity becomes dominant over inertia. We explain this paradox via a viscosity-driven, hydrodynamic coupling between the fluid and the particle that activates the rotational inertia of the particle, converting it into a ‘viscous flywheel’. This modality now enables the simultaneous measurement of particle volume and mass in fluid, using a single, high-throughput measurement. Balances for nanoparticles such as resonating fluid-filled cantilevers usually probe only mass through changes in oscillation frequency. Katsikis and Collis et al. tap information from previously ignored rotational motion to simultaneously measure particle mass and volume.
Collapse
|
12
|
Maillard D, De Pastina A, Abazari AM, Villanueva LG. Avoiding transduction-induced heating in suspended microchannel resonators using piezoelectricity. MICROSYSTEMS & NANOENGINEERING 2021; 7:34. [PMID: 34567748 PMCID: PMC8433141 DOI: 10.1038/s41378-021-00254-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/19/2021] [Accepted: 02/19/2021] [Indexed: 06/13/2023]
Abstract
Calorimetry of single biological entities remains elusive. Suspended microchannel resonators (SMRs) offer excellent performance for real-time detection of various analytes and could hold the key to unlocking pico-calorimetry experiments. However, the typical readout techniques for SMRs are optical-based, and significant heat is dissipated in the sensor, altering the measurement and worsening the frequency noise. In this manuscript, we demonstrate for the first time full on-chip piezoelectric transduction of SMRs on which we focus a laser Doppler vibrometer to analyze its effect. We demonstrate that suddenly applying the laser to a water-filled SMR causes a resonance frequency shift, which we attribute to a local increase in temperature. When the procedure is repeated at increasing flow rates, the resonance frequency shift diminishes, indicating that convection plays an important role in cooling down the device and dissipating the heat induced by the laser. We also show that the frequency stability of the device is degraded by the laser source. In comparison to an optical readout scheme, a low-dissipative transduction method such as piezoelectricity shows greater potential to capture the thermal properties of single entities.
Collapse
Affiliation(s)
- Damien Maillard
- Advanced NEMS Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Annalisa De Pastina
- Advanced NEMS Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Center for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin (TCD), Dublin 2, Ireland
| | - Amir Musa Abazari
- Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Luis Guillermo Villanueva
- Advanced NEMS Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Martín-Pérez A, Ramos D, Yubero ML, García-López S, Kosaka PM, Tamayo J, Calleja M. Hydrodynamic assisted multiparametric particle spectrometry. Sci Rep 2021; 11:3535. [PMID: 33574415 PMCID: PMC7878870 DOI: 10.1038/s41598-021-82708-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
The real-time analysis of single analytes in flow is becoming increasingly relevant in cell biology. In this work, we theoretically predict and experimentally demonstrate hydrodynamic focusing with hollow nanomechanical resonators by using an interferometric system which allows the optical probing of flowing particles and tracking of the fundamental mechanical mode of the resonator. We have characterized the hydrodynamic forces acting on the particles, which will determine their velocity depending on their diameter. By using the parameters simultaneously acquired: frequency shift, velocity and reflectivity, we can unambiguously classify flowing particles in real-time, allowing the measurement of the mass density: 1.35 ± 0.07 g·mL-1 for PMMA and 1.7 ± 0.2 g·mL-1 for silica particles, which perfectly agrees with the nominal values. Once we have tested our technique, MCF-7 human breast adenocarcinoma cells are characterized (1.11 ± 0.08 g·mL-1) with high throughput (300 cells/minute) observing a dependency with their size, opening the door for individual cell cycle studies.
Collapse
Affiliation(s)
- Alberto Martín-Pérez
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| | - Daniel Ramos
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain.
| | - Marina L Yubero
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| | - Sergio García-López
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| | - Priscila M Kosaka
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| | - Javier Tamayo
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| | - Montserrat Calleja
- Bionanomechanics Lab, Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), Isaac Newton 8 (PTM), E-28760 Tres Cantos, Madrid, Spain
| |
Collapse
|